Limits...
Substantial Improvement of Short Wavelength Response in n-SiNW/PEDOT:PSS Solar Cell.

Ge Z, Xu L, Cao Y, Wu T, Song H, Ma Z, Xu J, Chen K - Nanoscale Res Lett (2015)

Bottom Line: We fabricated more isolated silicon nanowires with the diluted etching solution.And the J sc of the hybrid solar cell with more isolated nanowires has a significant enhancement, from 30.1 to 33.2 mA/cm(2).The remarkable EQE in the wavelength region of 300 and 600 nm was also obtained, which are in excess of 80 %.

View Article: PubMed Central - PubMed

Affiliation: School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures of National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.

ABSTRACT
We report herein on the effects of silicon nanowire with different morphology on the device performance of n-SiNW/PEDOT:PSS hybrid solar cells. The power conversion efficiency (PCE) and external quantum efficiency (EQE) of the SiNW/PEDOT:PSS hybrid solar cells can be optimized by varying the length of the silicon nanowires. The optimal length of silicon nanowires is 0.23 μm, and the hybrid solar cell with the optimal length has the V oc of 569 mV, J sc of 30.1 mA/cm(2), and PCE of 9.3 %. We fabricated more isolated silicon nanowires with the diluted etching solution. And the J sc of the hybrid solar cell with more isolated nanowires has a significant enhancement, from 30.1 to 33.2 mA/cm(2). The remarkable EQE in the wavelength region of 300 and 600 nm was also obtained, which are in excess of 80 %. Our work provides a simple method to substantially improve the EQE of hybrid solar cell in the short wavelength region.

No MeSH data available.


Current density-voltage characteristics of the hybrid solar cells with different lengths of silicon nanowire arrays under a simulated AM1.5G illumination condition
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4539312&req=5

Fig2: Current density-voltage characteristics of the hybrid solar cells with different lengths of silicon nanowire arrays under a simulated AM1.5G illumination condition

Mentions: The current J–V characteristics of the hybrid solar cells with different lengths of SiNW arrays (shown in Fig. 2a) were measured under 100 mW/cm2 air mass 1.5 global (AM 1.5G) illumination. Four solar cells with different nanowire length (L) were investigated and the device parameters, such as short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), PCE, etc. are deduced from the J–V characteristics (summarized in Table 1). It is seen that the PCE increases with L and reaches a maximum of 9.3 % at L = 0.23 μm. It decreases to 7.2 % as L is further increased to 0.80 μm. The Jsc decreases from 30.1 to 29.3 mA/cm2 as L is increased from 0.23 to 0.80 μm. As seen from Table 1, the maximum value of Voc and FF were obtained at the optimal length of L = 0.23 μm. As L is increased further to L = 0.80 μm, both Voc and FF decrease monotonically to 528 mV and 46 %.Fig. 2


Substantial Improvement of Short Wavelength Response in n-SiNW/PEDOT:PSS Solar Cell.

Ge Z, Xu L, Cao Y, Wu T, Song H, Ma Z, Xu J, Chen K - Nanoscale Res Lett (2015)

Current density-voltage characteristics of the hybrid solar cells with different lengths of silicon nanowire arrays under a simulated AM1.5G illumination condition
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4539312&req=5

Fig2: Current density-voltage characteristics of the hybrid solar cells with different lengths of silicon nanowire arrays under a simulated AM1.5G illumination condition
Mentions: The current J–V characteristics of the hybrid solar cells with different lengths of SiNW arrays (shown in Fig. 2a) were measured under 100 mW/cm2 air mass 1.5 global (AM 1.5G) illumination. Four solar cells with different nanowire length (L) were investigated and the device parameters, such as short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), PCE, etc. are deduced from the J–V characteristics (summarized in Table 1). It is seen that the PCE increases with L and reaches a maximum of 9.3 % at L = 0.23 μm. It decreases to 7.2 % as L is further increased to 0.80 μm. The Jsc decreases from 30.1 to 29.3 mA/cm2 as L is increased from 0.23 to 0.80 μm. As seen from Table 1, the maximum value of Voc and FF were obtained at the optimal length of L = 0.23 μm. As L is increased further to L = 0.80 μm, both Voc and FF decrease monotonically to 528 mV and 46 %.Fig. 2

Bottom Line: We fabricated more isolated silicon nanowires with the diluted etching solution.And the J sc of the hybrid solar cell with more isolated nanowires has a significant enhancement, from 30.1 to 33.2 mA/cm(2).The remarkable EQE in the wavelength region of 300 and 600 nm was also obtained, which are in excess of 80 %.

View Article: PubMed Central - PubMed

Affiliation: School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures of National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.

ABSTRACT
We report herein on the effects of silicon nanowire with different morphology on the device performance of n-SiNW/PEDOT:PSS hybrid solar cells. The power conversion efficiency (PCE) and external quantum efficiency (EQE) of the SiNW/PEDOT:PSS hybrid solar cells can be optimized by varying the length of the silicon nanowires. The optimal length of silicon nanowires is 0.23 μm, and the hybrid solar cell with the optimal length has the V oc of 569 mV, J sc of 30.1 mA/cm(2), and PCE of 9.3 %. We fabricated more isolated silicon nanowires with the diluted etching solution. And the J sc of the hybrid solar cell with more isolated nanowires has a significant enhancement, from 30.1 to 33.2 mA/cm(2). The remarkable EQE in the wavelength region of 300 and 600 nm was also obtained, which are in excess of 80 %. Our work provides a simple method to substantially improve the EQE of hybrid solar cell in the short wavelength region.

No MeSH data available.