Limits...
Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity.

Khedr MA - Drug Des Devel Ther (2015)

Bottom Line: In silico study results showed the high binding affinity to lanosterol 14α-demethylase (-24.49 and -25.83 kcal/mol) for compounds V and VII, respectively; these values were greater than those for miconazole (-18.19 kcal/mol) and fluconazole (-16.08 kcal/mol).Compound V emerged as the most potent antifungal agent among all compounds with a half maximal inhibitory concentration of 7.01, 7.59, 7.25, 31.6, and 41.6 µg/mL against Candida albicans, Candida parapsilosis, Aspergillus niger, Trichophyton rubrum, and Trichophyton mentagrophytes, respectively.The antifungal activity for most of the synthesized compounds was more potent than that of miconazole and fluconazole.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt.

ABSTRACT
Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were synthesized and evaluated for their antifungal activity. In silico study results showed the high binding affinity to lanosterol 14α-demethylase (-24.49 and -25.83 kcal/mol) for compounds V and VII, respectively; these values were greater than those for miconazole (-18.19 kcal/mol) and fluconazole (-16.08 kcal/mol). Compound V emerged as the most potent antifungal agent among all compounds with a half maximal inhibitory concentration of 7.01, 7.59, 7.25, 31.6, and 41.6 µg/mL against Candida albicans, Candida parapsilosis, Aspergillus niger, Trichophyton rubrum, and Trichophyton mentagrophytes, respectively. The antifungal activity for most of the synthesized compounds was more potent than that of miconazole and fluconazole.

No MeSH data available.


Related in: MedlinePlus

Proposed design for antifungal agents with carboxylic heme chelator.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4539092&req=5

f6-dddt-9-4501: Proposed design for antifungal agents with carboxylic heme chelator.

Mentions: According to these findings from the literature, a proposed structure for an L14αDM inhibitor was designed in which a carboxylic group was used for heme-coordination; the 2,4-dichloro phenoxy moiety was selected as a main side chain, in addition to a substituted aromatic ring. The final selection of the substituted aromatic rings was achieved after a rational docking study for selection of the top ranked compounds for synthesis. The geometry was fixed to the Z-configuration by adding C=C in the two carbon linker between the heme-chelator group and the substituted aromatic ring (Figure 6).


Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity.

Khedr MA - Drug Des Devel Ther (2015)

Proposed design for antifungal agents with carboxylic heme chelator.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4539092&req=5

f6-dddt-9-4501: Proposed design for antifungal agents with carboxylic heme chelator.
Mentions: According to these findings from the literature, a proposed structure for an L14αDM inhibitor was designed in which a carboxylic group was used for heme-coordination; the 2,4-dichloro phenoxy moiety was selected as a main side chain, in addition to a substituted aromatic ring. The final selection of the substituted aromatic rings was achieved after a rational docking study for selection of the top ranked compounds for synthesis. The geometry was fixed to the Z-configuration by adding C=C in the two carbon linker between the heme-chelator group and the substituted aromatic ring (Figure 6).

Bottom Line: In silico study results showed the high binding affinity to lanosterol 14α-demethylase (-24.49 and -25.83 kcal/mol) for compounds V and VII, respectively; these values were greater than those for miconazole (-18.19 kcal/mol) and fluconazole (-16.08 kcal/mol).Compound V emerged as the most potent antifungal agent among all compounds with a half maximal inhibitory concentration of 7.01, 7.59, 7.25, 31.6, and 41.6 µg/mL against Candida albicans, Candida parapsilosis, Aspergillus niger, Trichophyton rubrum, and Trichophyton mentagrophytes, respectively.The antifungal activity for most of the synthesized compounds was more potent than that of miconazole and fluconazole.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt.

ABSTRACT
Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were synthesized and evaluated for their antifungal activity. In silico study results showed the high binding affinity to lanosterol 14α-demethylase (-24.49 and -25.83 kcal/mol) for compounds V and VII, respectively; these values were greater than those for miconazole (-18.19 kcal/mol) and fluconazole (-16.08 kcal/mol). Compound V emerged as the most potent antifungal agent among all compounds with a half maximal inhibitory concentration of 7.01, 7.59, 7.25, 31.6, and 41.6 µg/mL against Candida albicans, Candida parapsilosis, Aspergillus niger, Trichophyton rubrum, and Trichophyton mentagrophytes, respectively. The antifungal activity for most of the synthesized compounds was more potent than that of miconazole and fluconazole.

No MeSH data available.


Related in: MedlinePlus