Limits...
Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells.

Bhummaphan N, Chanvorachote P - Evid Based Complement Alternat Med (2015)

Bottom Line: Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs.Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1.In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

View Article: PubMed Central - PubMed

Affiliation: Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

ABSTRACT
As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt) signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

No MeSH data available.


Related in: MedlinePlus

The scheme represents the effect of gigantol on human lung cancer cells. The present study reveals that gigantol has an ability to reduce CSCs markers including CD133 and ALDH1A1 in the cancer cells by suppressing the activation of protein kinase B (Akt) signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4539074&req=5

fig7: The scheme represents the effect of gigantol on human lung cancer cells. The present study reveals that gigantol has an ability to reduce CSCs markers including CD133 and ALDH1A1 in the cancer cells by suppressing the activation of protein kinase B (Akt) signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog.

Mentions: In conclusion, we reported a novel finding on the effect of gigantol in suppression of stemness and other CSC-like phenotypes in human lung cancer cells. We have demonstrated that the compound suppresses CSCs features by suppressing the Akt signal leading to the decrease of stem cell factors Oct4 and Nanog (Figure 7). Because CSCs have been tightly linked to the progression of cancer, aggressiveness, and metastasis, the findings of this study could be beneficial to the development of this compound to be useful for cancer therapeutic approaches.


Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells.

Bhummaphan N, Chanvorachote P - Evid Based Complement Alternat Med (2015)

The scheme represents the effect of gigantol on human lung cancer cells. The present study reveals that gigantol has an ability to reduce CSCs markers including CD133 and ALDH1A1 in the cancer cells by suppressing the activation of protein kinase B (Akt) signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4539074&req=5

fig7: The scheme represents the effect of gigantol on human lung cancer cells. The present study reveals that gigantol has an ability to reduce CSCs markers including CD133 and ALDH1A1 in the cancer cells by suppressing the activation of protein kinase B (Akt) signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog.
Mentions: In conclusion, we reported a novel finding on the effect of gigantol in suppression of stemness and other CSC-like phenotypes in human lung cancer cells. We have demonstrated that the compound suppresses CSCs features by suppressing the Akt signal leading to the decrease of stem cell factors Oct4 and Nanog (Figure 7). Because CSCs have been tightly linked to the progression of cancer, aggressiveness, and metastasis, the findings of this study could be beneficial to the development of this compound to be useful for cancer therapeutic approaches.

Bottom Line: Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs.Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1.In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

View Article: PubMed Central - PubMed

Affiliation: Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

ABSTRACT
As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt) signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

No MeSH data available.


Related in: MedlinePlus