Limits...
Protein kinase C delta mice exhibit structural alterations in articular surface, intra-articular and subchondral compartments.

Yang X, Teguh D, Wu JP, He B, Kirk TB, Qin S, Li S, Chen H, Xue W, Ng B, Chim SM, Tickner J, Xu J - Arthritis Res. Ther. (2015)

Bottom Line: Structural alterations in intra-articular and subchondral compartments are hallmarks of osteoarthritis, a degenerative disease that causes pain and disability in the aging population.The morphology and organization of chondrocytes were studied using confocal microscopy.Interestingly, loss of demarcation between articular cartilage and bone was concomitant with irregular chondrocyte morphology and arrangement.

View Article: PubMed Central - PubMed

Affiliation: Guangzhou Institute of Traumatic Surgery, the Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou, 510220, China. dr.yang1192@yahoo.com.

ABSTRACT

Introduction: Structural alterations in intra-articular and subchondral compartments are hallmarks of osteoarthritis, a degenerative disease that causes pain and disability in the aging population. Protein kinase C delta (PKC-δ) plays versatile functions in cell growth and differentiation, but its role in the articular cartilage and subchondral bone is not known.

Methods: Histological analysis including alcian blue, safranin O staining and fluorochrome labeling were used to reveal structural alterations at the articular cartilage surface and bone-cartilage interface in PKC-δ knockout (KO) mice. The morphology and organization of chondrocytes were studied using confocal microscopy. Glycosaminoglycan content was studied by micromass culture of chondrocytes of PKC-δ KO mice.

Results: We uncovered atypical structural demarcation between articular cartilage and subchondral bone of PKC-δ KO mice. Histology analyses revealed a thickening of the articular cartilage and calcified bone-cartilage interface, and decreased safranin O staining accompanied by an increase in the number of hypertrophic chondrocytes in the articular cartilage of PKC-δ KO mice. Interestingly, loss of demarcation between articular cartilage and bone was concomitant with irregular chondrocyte morphology and arrangement. Consistently, in vivo calcein labeling assay showed an increased intensity of calcein labeling in the interface of the growth plate and metaphysis in PKC-δ KO mice. Furthermore, in vitro culture of chondrocyte micromass showed a decreased alcian blue staining of chondrocyte micromass in the PKC-δ KO mice, indicative of a reduced level of glycosaminoglycan production.

Conclusions: Our data imply a role for PKC-δ in the osteochondral plasticity of the interface between articular cartilage and the osteochondral junction.

No MeSH data available.


Related in: MedlinePlus

Histological analysis of the interface between the growth plate and metaphysis in protein kinase C delta (PKC-δ)+/+ and PKC-δ−/− mice. a, b Alcian blue staining was performed in tibia with Ponceau S counterstain. Arrow points to the area where the matrix of the growth plate is located. c Measurement of the height of growth plates by alcian blue staining regions in PKC-δ+/+ and PKC-δ−/− mice
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4538913&req=5

Fig4: Histological analysis of the interface between the growth plate and metaphysis in protein kinase C delta (PKC-δ)+/+ and PKC-δ−/− mice. a, b Alcian blue staining was performed in tibia with Ponceau S counterstain. Arrow points to the area where the matrix of the growth plate is located. c Measurement of the height of growth plates by alcian blue staining regions in PKC-δ+/+ and PKC-δ−/− mice

Mentions: Next, we evaluated in vivo calcein labeling-based bone formation in the interface between the growth plate and metaphysis by measuring calcein labeling intensity as described in the Materials and methods [15]. The results showed that there is a significant increase in calcein labeling intensity per area (μm2) in PKC-δ KO mice as compared to WT mice, suggesting an increase in bone formation in the interface between the growth plate and metaphysis in PKC-δ KO mice (Fig. 3). Histological examination revealed that there is slightly weaker staining with alcian blue (Fig. 4) and safranin O (Additional file 1) in PKC-δ KO mice, with no significant difference in the height of the growth plate as measured by alcian blue (Fig. 4) and safranin O staining regions (Additional file 1). Ponceau 2R staining showed increased trabecular bone (Fig. 4), which is consistent with our previous observations using hematoxylin and eosin staining [11].Fig. 3


Protein kinase C delta mice exhibit structural alterations in articular surface, intra-articular and subchondral compartments.

Yang X, Teguh D, Wu JP, He B, Kirk TB, Qin S, Li S, Chen H, Xue W, Ng B, Chim SM, Tickner J, Xu J - Arthritis Res. Ther. (2015)

Histological analysis of the interface between the growth plate and metaphysis in protein kinase C delta (PKC-δ)+/+ and PKC-δ−/− mice. a, b Alcian blue staining was performed in tibia with Ponceau S counterstain. Arrow points to the area where the matrix of the growth plate is located. c Measurement of the height of growth plates by alcian blue staining regions in PKC-δ+/+ and PKC-δ−/− mice
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4538913&req=5

Fig4: Histological analysis of the interface between the growth plate and metaphysis in protein kinase C delta (PKC-δ)+/+ and PKC-δ−/− mice. a, b Alcian blue staining was performed in tibia with Ponceau S counterstain. Arrow points to the area where the matrix of the growth plate is located. c Measurement of the height of growth plates by alcian blue staining regions in PKC-δ+/+ and PKC-δ−/− mice
Mentions: Next, we evaluated in vivo calcein labeling-based bone formation in the interface between the growth plate and metaphysis by measuring calcein labeling intensity as described in the Materials and methods [15]. The results showed that there is a significant increase in calcein labeling intensity per area (μm2) in PKC-δ KO mice as compared to WT mice, suggesting an increase in bone formation in the interface between the growth plate and metaphysis in PKC-δ KO mice (Fig. 3). Histological examination revealed that there is slightly weaker staining with alcian blue (Fig. 4) and safranin O (Additional file 1) in PKC-δ KO mice, with no significant difference in the height of the growth plate as measured by alcian blue (Fig. 4) and safranin O staining regions (Additional file 1). Ponceau 2R staining showed increased trabecular bone (Fig. 4), which is consistent with our previous observations using hematoxylin and eosin staining [11].Fig. 3

Bottom Line: Structural alterations in intra-articular and subchondral compartments are hallmarks of osteoarthritis, a degenerative disease that causes pain and disability in the aging population.The morphology and organization of chondrocytes were studied using confocal microscopy.Interestingly, loss of demarcation between articular cartilage and bone was concomitant with irregular chondrocyte morphology and arrangement.

View Article: PubMed Central - PubMed

Affiliation: Guangzhou Institute of Traumatic Surgery, the Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou, 510220, China. dr.yang1192@yahoo.com.

ABSTRACT

Introduction: Structural alterations in intra-articular and subchondral compartments are hallmarks of osteoarthritis, a degenerative disease that causes pain and disability in the aging population. Protein kinase C delta (PKC-δ) plays versatile functions in cell growth and differentiation, but its role in the articular cartilage and subchondral bone is not known.

Methods: Histological analysis including alcian blue, safranin O staining and fluorochrome labeling were used to reveal structural alterations at the articular cartilage surface and bone-cartilage interface in PKC-δ knockout (KO) mice. The morphology and organization of chondrocytes were studied using confocal microscopy. Glycosaminoglycan content was studied by micromass culture of chondrocytes of PKC-δ KO mice.

Results: We uncovered atypical structural demarcation between articular cartilage and subchondral bone of PKC-δ KO mice. Histology analyses revealed a thickening of the articular cartilage and calcified bone-cartilage interface, and decreased safranin O staining accompanied by an increase in the number of hypertrophic chondrocytes in the articular cartilage of PKC-δ KO mice. Interestingly, loss of demarcation between articular cartilage and bone was concomitant with irregular chondrocyte morphology and arrangement. Consistently, in vivo calcein labeling assay showed an increased intensity of calcein labeling in the interface of the growth plate and metaphysis in PKC-δ KO mice. Furthermore, in vitro culture of chondrocyte micromass showed a decreased alcian blue staining of chondrocyte micromass in the PKC-δ KO mice, indicative of a reduced level of glycosaminoglycan production.

Conclusions: Our data imply a role for PKC-δ in the osteochondral plasticity of the interface between articular cartilage and the osteochondral junction.

No MeSH data available.


Related in: MedlinePlus