Limits...
miR-965 controls cell proliferation and migration during tissue morphogenesis in the Drosophila abdomen.

Verma P, Cohen SM - Elife (2015)

Bottom Line: During pupal development, the abdominal histoblast cells proliferate and migrate to replace the larval epidermis.Ecdysone signaling downregulates miR-965 at the onset of pupariation, linking activation of the histoblast nests to the hormonal control of metamorphosis.By regulating both cell proliferation and cell migration, miR-965 contributes to the robustness of this morphogenetic system.

View Article: PubMed Central - PubMed

Affiliation: Institute of Molecular and Cell Biology, Singapore, Singapore.

ABSTRACT
Formation of the Drosophila adult abdomen involves a process of tissue replacement in which larval epidermal cells are replaced by adult cells. The progenitors of the adult epidermis are specified during embryogenesis and, unlike the imaginal discs that make up the thoracic and head segments, they remain quiescent during larval development. During pupal development, the abdominal histoblast cells proliferate and migrate to replace the larval epidermis. Here, we provide evidence that the microRNA, miR-965, acts via string and wingless to control histoblast proliferation and migration. Ecdysone signaling downregulates miR-965 at the onset of pupariation, linking activation of the histoblast nests to the hormonal control of metamorphosis. Replacement of the larval epidermis by adult epidermal progenitors involves regulation of both cell-intrinsic events and cell communication. By regulating both cell proliferation and cell migration, miR-965 contributes to the robustness of this morphogenetic system.

No MeSH data available.


Related in: MedlinePlus

DOI:http://dx.doi.org/10.7554/eLife.07389.038
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4538364&req=5

fig8: DOI:http://dx.doi.org/10.7554/eLife.07389.038

Mentions: We examined the relationship between EcR and string at the onset of pupariation (0hr white prepupae), when the Ecdysone pulse induces string to trigger histoblast proliferation. Wg expression begins in the histoblast nests from 15hr after pupariation, so it is not evident that we should expect the link between EcR and wg to be analogous to that with string. Nonetheless, we did test wg transcript in the 0hr prepupal RNA samples used for the string experiment: there was no effect (Author response image 2). We did not include the wg data in the revised Figure 6, but can do so if the editors request it.10.7554/eLife.07389.038Author response image 2.


miR-965 controls cell proliferation and migration during tissue morphogenesis in the Drosophila abdomen.

Verma P, Cohen SM - Elife (2015)

DOI:http://dx.doi.org/10.7554/eLife.07389.038
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4538364&req=5

fig8: DOI:http://dx.doi.org/10.7554/eLife.07389.038
Mentions: We examined the relationship between EcR and string at the onset of pupariation (0hr white prepupae), when the Ecdysone pulse induces string to trigger histoblast proliferation. Wg expression begins in the histoblast nests from 15hr after pupariation, so it is not evident that we should expect the link between EcR and wg to be analogous to that with string. Nonetheless, we did test wg transcript in the 0hr prepupal RNA samples used for the string experiment: there was no effect (Author response image 2). We did not include the wg data in the revised Figure 6, but can do so if the editors request it.10.7554/eLife.07389.038Author response image 2.

Bottom Line: During pupal development, the abdominal histoblast cells proliferate and migrate to replace the larval epidermis.Ecdysone signaling downregulates miR-965 at the onset of pupariation, linking activation of the histoblast nests to the hormonal control of metamorphosis.By regulating both cell proliferation and cell migration, miR-965 contributes to the robustness of this morphogenetic system.

View Article: PubMed Central - PubMed

Affiliation: Institute of Molecular and Cell Biology, Singapore, Singapore.

ABSTRACT
Formation of the Drosophila adult abdomen involves a process of tissue replacement in which larval epidermal cells are replaced by adult cells. The progenitors of the adult epidermis are specified during embryogenesis and, unlike the imaginal discs that make up the thoracic and head segments, they remain quiescent during larval development. During pupal development, the abdominal histoblast cells proliferate and migrate to replace the larval epidermis. Here, we provide evidence that the microRNA, miR-965, acts via string and wingless to control histoblast proliferation and migration. Ecdysone signaling downregulates miR-965 at the onset of pupariation, linking activation of the histoblast nests to the hormonal control of metamorphosis. Replacement of the larval epidermis by adult epidermal progenitors involves regulation of both cell-intrinsic events and cell communication. By regulating both cell proliferation and cell migration, miR-965 contributes to the robustness of this morphogenetic system.

No MeSH data available.


Related in: MedlinePlus