Limits...
Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


Related in: MedlinePlus

The (a) shows the total decay width normalised to the SM value in the LHT (from [526]). The difference between case A and case B comes from the definition of the down-type Yukawa term (for details, see [526]). The (b) shows the partial Higgs branching ratios normalised to the SM value (from [526])
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4537698&req=5

Fig95: The (a) shows the total decay width normalised to the SM value in the LHT (from [526]). The difference between case A and case B comes from the definition of the down-type Yukawa term (for details, see [526]). The (b) shows the partial Higgs branching ratios normalised to the SM value (from [526])

Mentions: However, the down-type Yukawa coupling has model dependence and the couplings could be significantly suppressed in some case of the LHT [526]. Thus, the decay branching ratio of a light Higgs boson () could significantly change because the dominant decay width, is suppressed. Figure 95 shows the correction of the branching ratio from the SM prediction [526].Fig. 95


Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

The (a) shows the total decay width normalised to the SM value in the LHT (from [526]). The difference between case A and case B comes from the definition of the down-type Yukawa term (for details, see [526]). The (b) shows the partial Higgs branching ratios normalised to the SM value (from [526])
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4537698&req=5

Fig95: The (a) shows the total decay width normalised to the SM value in the LHT (from [526]). The difference between case A and case B comes from the definition of the down-type Yukawa term (for details, see [526]). The (b) shows the partial Higgs branching ratios normalised to the SM value (from [526])
Mentions: However, the down-type Yukawa coupling has model dependence and the couplings could be significantly suppressed in some case of the LHT [526]. Thus, the decay branching ratio of a light Higgs boson () could significantly change because the dominant decay width, is suppressed. Figure 95 shows the correction of the branching ratio from the SM prediction [526].Fig. 95

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


Related in: MedlinePlus