Limits...
Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


– plane in the  scenario (upper) and in the  scenario (lower plot) [238]. The green-shaded area yields , the red area at high  is excluded by LHC heavy MSSM Higgs-boson searches, the blue area is excluded by LEP Higgs searches, and the red strip at low is excluded by the LHC SM Higgs searches
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4537698&req=5

Fig61: – plane in the scenario (upper) and in the scenario (lower plot) [238]. The green-shaded area yields , the red area at high is excluded by LHC heavy MSSM Higgs-boson searches, the blue area is excluded by LEP Higgs searches, and the red strip at low is excluded by the LHC SM Higgs searches

Mentions: Here we briefly discuss the results in two of the new benchmark scenarios [238], devised for the search for heavy MSSM Higgs bosons. In the upper plot of Fig. 61 the scenario is shown. The red area is excluded by LHC searches for the heavy MSSM Higgs bosons, the blue area is excluded by LEP Higgs searches, and the light shaded red area is excluded by LHC searches for a SM-like Higgs boson. The bounds have been obtained with HiggsBounds [250–252] (where an extensive list of original references can be found). The green area yields  GeV, i.e. the region allowed by the experimental data, taking into account the theoretical uncertainty in the calculation as discussed above. The left plot also allows one to extract new lower limits on and . From this analysis it can be concluded that if the light -even Higgs is interpreted as the newly discovered state at 125 GeV, then , and  [238]. Fig. 61


Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

– plane in the  scenario (upper) and in the  scenario (lower plot) [238]. The green-shaded area yields , the red area at high  is excluded by LHC heavy MSSM Higgs-boson searches, the blue area is excluded by LEP Higgs searches, and the red strip at low is excluded by the LHC SM Higgs searches
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4537698&req=5

Fig61: – plane in the scenario (upper) and in the scenario (lower plot) [238]. The green-shaded area yields , the red area at high is excluded by LHC heavy MSSM Higgs-boson searches, the blue area is excluded by LEP Higgs searches, and the red strip at low is excluded by the LHC SM Higgs searches
Mentions: Here we briefly discuss the results in two of the new benchmark scenarios [238], devised for the search for heavy MSSM Higgs bosons. In the upper plot of Fig. 61 the scenario is shown. The red area is excluded by LHC searches for the heavy MSSM Higgs bosons, the blue area is excluded by LEP Higgs searches, and the light shaded red area is excluded by LHC searches for a SM-like Higgs boson. The bounds have been obtained with HiggsBounds [250–252] (where an extensive list of original references can be found). The green area yields  GeV, i.e. the region allowed by the experimental data, taking into account the theoretical uncertainty in the calculation as discussed above. The left plot also allows one to extract new lower limits on and . From this analysis it can be concluded that if the light -even Higgs is interpreted as the newly discovered state at 125 GeV, then , and  [238]. Fig. 61

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.