Limits...
Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


Search reach in the  plane for LHC and CLIC. The left-most coloured regions are current limits from the Tevatron with 7.5  of data at  TeV and from 1  of LHC data at  TeV. The black line is projection of search reach at LHC with  TeV and 300  of luminosity [211]. The right-most red line is search reach of CLIC in the HA mode with  TeV. This search capacity extends well beyond the LHC [9, 10]
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4537698&req=5

Fig58: Search reach in the plane for LHC and CLIC. The left-most coloured regions are current limits from the Tevatron with 7.5  of data at  TeV and from 1  of LHC data at  TeV. The black line is projection of search reach at LHC with  TeV and 300  of luminosity [211]. The right-most red line is search reach of CLIC in the HA mode with  TeV. This search capacity extends well beyond the LHC [9, 10]

Mentions: In many supersymmetric scenarios, the Higgs sector consists of one light Higgs boson h, consistent with a SM Higgs boson, while the remaining four Higgs bosons are almost mass degenerate and have masses way beyond 500 GeV, see Sect. 2.5. These scenarios are consistent with current results from ATLAS and CMS on the Higgs boson [209, 210]. If this scenario for the Higgs sector has been realised, it will be extremely challenging to discover these additional final states at the LHC, especially in the low regime, where e.g. the reach for the pseudoscalar A can be as low as 200 GeV (see Fig. 58).Fig. 58


Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Search reach in the  plane for LHC and CLIC. The left-most coloured regions are current limits from the Tevatron with 7.5  of data at  TeV and from 1  of LHC data at  TeV. The black line is projection of search reach at LHC with  TeV and 300  of luminosity [211]. The right-most red line is search reach of CLIC in the HA mode with  TeV. This search capacity extends well beyond the LHC [9, 10]
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4537698&req=5

Fig58: Search reach in the plane for LHC and CLIC. The left-most coloured regions are current limits from the Tevatron with 7.5  of data at  TeV and from 1  of LHC data at  TeV. The black line is projection of search reach at LHC with  TeV and 300  of luminosity [211]. The right-most red line is search reach of CLIC in the HA mode with  TeV. This search capacity extends well beyond the LHC [9, 10]
Mentions: In many supersymmetric scenarios, the Higgs sector consists of one light Higgs boson h, consistent with a SM Higgs boson, while the remaining four Higgs bosons are almost mass degenerate and have masses way beyond 500 GeV, see Sect. 2.5. These scenarios are consistent with current results from ATLAS and CMS on the Higgs boson [209, 210]. If this scenario for the Higgs sector has been realised, it will be extremely challenging to discover these additional final states at the LHC, especially in the low regime, where e.g. the reach for the pseudoscalar A can be as low as 200 GeV (see Fig. 58).Fig. 58

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.