Limits...
Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


Expected mass–coupling relation for the SM case after the full ILC programme
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4537698&req=5

Fig50: Expected mass–coupling relation for the SM case after the full ILC programme

Mentions: The data at , 500, and GeV can be combined to perform a global fit to extract various Higgs couplings [195]. We have 33 measurements: 31 shown in Table 12 plus two measurements at and GeV. The key is the recoil mass measurement that unlocks the door to a fully model-independent analysis. Notice that such a fully model-independent analysis is impossible at the LHC. As shown in Table 12, we can measure the recoil mass cross section at and GeV. Altogether we have 35 independent measurements: 33 measurements () and 2 measurements (). We can then define a function:19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \chi ^2= & {} \sum _{i=1}^{35} \left( \frac{Y_i - Y'_i}{\varDelta Y_i}\right) ^2 \end{aligned}$$\end{document}χ2=∑i=135Yi-Yi′ΔYi2where20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Y'_i := F_i \cdot \frac{g^2_{hA_i A_i} g^2_{hB_i B_i}}{{\varGamma }_0} \quad (i=1, \ldots , 33) \end{aligned}$$\end{document}Yi′:=Fi·ghAiAi2ghBiBi2Γ0(i=1,…,33)with being Z, W, or t, and being b, c, , , g, , Z, and W, denoting the total width and21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F_i= & {} S_i G_i \end{aligned}$$\end{document}Fi=SiGiwith22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&S_i = \left( \frac{\sigma _{Zh}}{g^2_{hZZ}}\right) , ~ \left( \frac{\sigma _{\nu \bar{\nu }h}}{g^2_{hWW}}\right) , ~\mathrm{or} ~ \left( \frac{\sigma _{t\bar{t}h}}{g^2_{htt}}\right) \nonumber \\&G_i = \left( \frac{\varGamma _i}{g^2_i} \right) . \end{aligned}$$\end{document}Si=σZhghZZ2,σνν¯hghWW2,orσtt¯hghtt2Gi=Γigi2.Cross section calculations () do not involve QCD ISR unlike with the LHC. Partial width calculations (), being normalised by the coupling squared, do not need quark mass as input. We are hence confident that the goal theory errors for and will be at the 0.1% level at the time of ILC running. The free parameters are 9 coupling constants: , , , , , , , , and 1 total width: . Table 13 summarises the expected coupling precisions for GeV with the baseline integrated luminosities of 250 fb at GeV, 500 fb at 500 GeV both with beam polarisation, and 1 ab at 1 TeV with beam polarisation. The expected coupling precisions are plotted in the mass–coupling plot expected for the SM Higgs sector in Fig. 50. The error bars for most couplings are almost invisible in this logarithmic plot.Table 13


Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Expected mass–coupling relation for the SM case after the full ILC programme
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4537698&req=5

Fig50: Expected mass–coupling relation for the SM case after the full ILC programme
Mentions: The data at , 500, and GeV can be combined to perform a global fit to extract various Higgs couplings [195]. We have 33 measurements: 31 shown in Table 12 plus two measurements at and GeV. The key is the recoil mass measurement that unlocks the door to a fully model-independent analysis. Notice that such a fully model-independent analysis is impossible at the LHC. As shown in Table 12, we can measure the recoil mass cross section at and GeV. Altogether we have 35 independent measurements: 33 measurements () and 2 measurements (). We can then define a function:19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \chi ^2= & {} \sum _{i=1}^{35} \left( \frac{Y_i - Y'_i}{\varDelta Y_i}\right) ^2 \end{aligned}$$\end{document}χ2=∑i=135Yi-Yi′ΔYi2where20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Y'_i := F_i \cdot \frac{g^2_{hA_i A_i} g^2_{hB_i B_i}}{{\varGamma }_0} \quad (i=1, \ldots , 33) \end{aligned}$$\end{document}Yi′:=Fi·ghAiAi2ghBiBi2Γ0(i=1,…,33)with being Z, W, or t, and being b, c, , , g, , Z, and W, denoting the total width and21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F_i= & {} S_i G_i \end{aligned}$$\end{document}Fi=SiGiwith22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&S_i = \left( \frac{\sigma _{Zh}}{g^2_{hZZ}}\right) , ~ \left( \frac{\sigma _{\nu \bar{\nu }h}}{g^2_{hWW}}\right) , ~\mathrm{or} ~ \left( \frac{\sigma _{t\bar{t}h}}{g^2_{htt}}\right) \nonumber \\&G_i = \left( \frac{\varGamma _i}{g^2_i} \right) . \end{aligned}$$\end{document}Si=σZhghZZ2,σνν¯hghWW2,orσtt¯hghtt2Gi=Γigi2.Cross section calculations () do not involve QCD ISR unlike with the LHC. Partial width calculations (), being normalised by the coupling squared, do not need quark mass as input. We are hence confident that the goal theory errors for and will be at the 0.1% level at the time of ILC running. The free parameters are 9 coupling constants: , , , , , , , , and 1 total width: . Table 13 summarises the expected coupling precisions for GeV with the baseline integrated luminosities of 250 fb at GeV, 500 fb at 500 GeV both with beam polarisation, and 1 ab at 1 TeV with beam polarisation. The expected coupling precisions are plotted in the mass–coupling plot expected for the SM Higgs sector in Fig. 50. The error bars for most couplings are almost invisible in this logarithmic plot.Table 13

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.