Limits...
Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


Related in: MedlinePlus

Recoil mass distribution for the process:  followed by  decay for  GeV with 250 fb at  GeV [151]
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4537698&req=5

Fig43: Recoil mass distribution for the process: followed by decay for  GeV with 250 fb at  GeV [151]

Mentions: The most important measurement at this energy is that of the recoil mass for the process: followed by decay. By virtue of the collider, we know the initial-state 4-momentum. We can hence calculate the invariant mass of the system recoiling against the lepton pair from the Z decay by just measuring the momenta of the lepton pair:15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} M_X^2 = \left( p_{CM} - (p_{\ell ^+} + p_{\ell ^-})\right) ^2. \end{aligned}$$\end{document}MX2=pCM-(pℓ++pℓ-)2.The recoil mass distribution is shown in Fig. 43 for a  GeV Higgs boson with 250 fb at  GeV. A very clean Higgs peak is sticking out from small background. Notice that with this recoil mass technique even invisible decay is detectable since we do not need to look at the Higgs decay at all [152]. This way, we can determine the Higgs mass to  MeV and the production cross section to  %, and limit the invisible branching ratio to 1 % at the 95 % confidence level [153, 154]. This is the flagship measurement of the ILC at 250 GeV that allows absolute measurement of the hZZ coupling thereby unlocking the door to completely model-independent determinations of various couplings of the Higgs boson as well as its total width as we will see below.


Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Recoil mass distribution for the process:  followed by  decay for  GeV with 250 fb at  GeV [151]
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4537698&req=5

Fig43: Recoil mass distribution for the process: followed by decay for  GeV with 250 fb at  GeV [151]
Mentions: The most important measurement at this energy is that of the recoil mass for the process: followed by decay. By virtue of the collider, we know the initial-state 4-momentum. We can hence calculate the invariant mass of the system recoiling against the lepton pair from the Z decay by just measuring the momenta of the lepton pair:15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} M_X^2 = \left( p_{CM} - (p_{\ell ^+} + p_{\ell ^-})\right) ^2. \end{aligned}$$\end{document}MX2=pCM-(pℓ++pℓ-)2.The recoil mass distribution is shown in Fig. 43 for a  GeV Higgs boson with 250 fb at  GeV. A very clean Higgs peak is sticking out from small background. Notice that with this recoil mass technique even invisible decay is detectable since we do not need to look at the Higgs decay at all [152]. This way, we can determine the Higgs mass to  MeV and the production cross section to  %, and limit the invisible branching ratio to 1 % at the 95 % confidence level [153, 154]. This is the flagship measurement of the ILC at 250 GeV that allows absolute measurement of the hZZ coupling thereby unlocking the door to completely model-independent determinations of various couplings of the Higgs boson as well as its total width as we will see below.

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


Related in: MedlinePlus