Limits...
Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


Relative uncertainty on the signal strength determination expected for the ATLAS experiment [136]. Assuming a SM Higgs boson with a mass of 125 GeV and 300 fb and 3000 fb of 14 TeV data. The uncertainty pertains to the number of events passing the experimental selection, not to the particular Higgs boson process targeted. The hashed areas indicate the increase of the estimated error due to current theory systematic uncertainties
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4537698&req=5

Fig31: Relative uncertainty on the signal strength determination expected for the ATLAS experiment [136]. Assuming a SM Higgs boson with a mass of 125 GeV and 300 fb and 3000 fb of 14 TeV data. The uncertainty pertains to the number of events passing the experimental selection, not to the particular Higgs boson process targeted. The hashed areas indicate the increase of the estimated error due to current theory systematic uncertainties

Mentions: The expected relative uncertainties on the signal strength for CMS and ATLAS are shown in Table 4 and Fig. 31, indicating that for the most sensitive channels, experimental uncertainty around 5 % should be reachable with 3000 fb. Combining different final states and again assuming SM branching ratios, projections on the sensitivity to individual Higgs-boson production can be obtained; the corresponding ATLAS results are summarised in Table 5. For 3000 fb, the expected experimental uncertainties on the signal strength range from about 4 % for the dominant ggF production to about 10 % for the rare production mode. Figure 31 and Table 5 also indicate the contribution of current theoretical uncertainties, showing that reducing them further will be important to fully exploit the HL-LHC for Higgs boson precision studies.Table 5


Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Relative uncertainty on the signal strength determination expected for the ATLAS experiment [136]. Assuming a SM Higgs boson with a mass of 125 GeV and 300 fb and 3000 fb of 14 TeV data. The uncertainty pertains to the number of events passing the experimental selection, not to the particular Higgs boson process targeted. The hashed areas indicate the increase of the estimated error due to current theory systematic uncertainties
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4537698&req=5

Fig31: Relative uncertainty on the signal strength determination expected for the ATLAS experiment [136]. Assuming a SM Higgs boson with a mass of 125 GeV and 300 fb and 3000 fb of 14 TeV data. The uncertainty pertains to the number of events passing the experimental selection, not to the particular Higgs boson process targeted. The hashed areas indicate the increase of the estimated error due to current theory systematic uncertainties
Mentions: The expected relative uncertainties on the signal strength for CMS and ATLAS are shown in Table 4 and Fig. 31, indicating that for the most sensitive channels, experimental uncertainty around 5 % should be reachable with 3000 fb. Combining different final states and again assuming SM branching ratios, projections on the sensitivity to individual Higgs-boson production can be obtained; the corresponding ATLAS results are summarised in Table 5. For 3000 fb, the expected experimental uncertainties on the signal strength range from about 4 % for the dominant ggF production to about 10 % for the rare production mode. Figure 31 and Table 5 also indicate the contribution of current theoretical uncertainties, showing that reducing them further will be important to fully exploit the HL-LHC for Higgs boson precision studies.Table 5

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.