Limits...
Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


Related in: MedlinePlus

Left the total cross sections for pair production of wino-like neutralinos near threshold in the MSSM and the Dirac theory. Right dependence of the cross sections on the production angle  for  GeV. The sparticle masses in both plots are  GeV and  GeV (For the details, see Ref. [1192])
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4537698&req=5

Fig136: Left the total cross sections for pair production of wino-like neutralinos near threshold in the MSSM and the Dirac theory. Right dependence of the cross sections on the production angle for  GeV. The sparticle masses in both plots are  GeV and  GeV (For the details, see Ref. [1192])

Mentions: Another powerful experimental test for characterising the nature of neutralinos is based on the threshold behaviour of the neutralino diagonal-pair production and its polar-angle distribution (Fig. 136). In the case with Dirac neutralinos , the cross section for the process (–4) exhibits a typical sharp s-wave excitation and a forward–backward asymmetric angular distribution, while in the case with Majorana neutralinos the cross section for neutralino diagonal pair production in collisions is excited in the characteristic slow p-wave, and the angular distribution is forward–backward symmetric [1192].


Physics at the [Formula: see text] linear collider.

Moortgat-Pick G, Baer H, Battaglia M, Belanger G, Fujii K, Kalinowski J, Heinemeyer S, Kiyo Y, Olive K, Simon F, Uwer P, Wackeroth D, Zerwas PM, Arbey A, Asano M, Bagger J, Bechtle P, Bharucha A, Brau J, Brümmer F, Choi SY, Denner A, Desch K, Dittmaier S, Ellwanger U, Englert C, Freitas A, Ginzburg I, Godfrey S, Greiner N, Grojean C, Grünewald M, Heisig J, Höcker A, Kanemura S, Kawagoe K, Kogler R, Krawczyk M, Kronfeld AS, Kroseberg J, Liebler S, List J, Mahmoudi F, Mambrini Y, Matsumoto S, Mnich J, Mönig K, Mühlleitner MM, Pöschl R, Porod W, Porto S, Rolbiecki K, Schmitt M, Serpico P, Stanitzki M, Stål O, Stefaniak T, Stöckinger D, Weiglein G, Wilson GW, Zeune L, Moortgat F, Xella S, Bagger J, Brau J, Ellis J, Kawagoe K, Komamiya S, Kronfeld AS, Mnich J, Peskin M, Schlatter D, Wagner A, Yamamoto H - Eur Phys J C Part Fields (2015)

Left the total cross sections for pair production of wino-like neutralinos near threshold in the MSSM and the Dirac theory. Right dependence of the cross sections on the production angle  for  GeV. The sparticle masses in both plots are  GeV and  GeV (For the details, see Ref. [1192])
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4537698&req=5

Fig136: Left the total cross sections for pair production of wino-like neutralinos near threshold in the MSSM and the Dirac theory. Right dependence of the cross sections on the production angle for  GeV. The sparticle masses in both plots are  GeV and  GeV (For the details, see Ref. [1192])
Mentions: Another powerful experimental test for characterising the nature of neutralinos is based on the threshold behaviour of the neutralino diagonal-pair production and its polar-angle distribution (Fig. 136). In the case with Dirac neutralinos , the cross section for the process (–4) exhibits a typical sharp s-wave excitation and a forward–backward asymmetric angular distribution, while in the case with Majorana neutralinos the cross section for neutralino diagonal pair production in collisions is excited in the characteristic slow p-wave, and the angular distribution is forward–backward symmetric [1192].

Bottom Line: A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics.The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons.The connection to cosmology has been analysed as well.

View Article: PubMed Central - PubMed

Affiliation: II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany ; Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603 Hamburg, Germany.

ABSTRACT

A comprehensive review of physics at an [Formula: see text] linear collider in the energy range of [Formula: see text] GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

No MeSH data available.


Related in: MedlinePlus