Limits...
Investigating the potential of Shikonin as a novel hypertrophic scar treatment.

Fan C, Xie Y, Dong Y, Su Y, Upton Z - J. Biomed. Sci. (2015)

Bottom Line: Our results indicate that Shikonin preferentially inhibits cell proliferation and induces apoptosis in fibroblasts without affecting keratinocyte function.In addition, we found that the proliferation-inhibiting and apoptosis-inducing abilities of SHI might be triggered via MAPK and Bcl-2/Caspase 3 signalling pathways.Furthermore, SHI has been found to attenuate the expression of TGF-β1 in Transwell co-cultured "conditioned" medium.

View Article: PubMed Central - PubMed

Affiliation: Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia. c3.fan@connect.qut.edu.au.

ABSTRACT

Background: Hypertrophic scarring is a highly prevalent condition clinically and results from a decreased number of apoptotic fibroblasts and over-abundant production of collagen during scar formation following wound healing. Our previous studies indicated that Shikonin, an active component extracted from Radix Arnebiae, induces apoptosis and reduces collagen production in hypertrophic scar-derived fibroblasts. In the study reported here, we further evaluate the potential use of Shikonin as a novel scar remediation therapy by examining the effects of Shikonin on both keratinocytes and fibroblasts using Transwell® co-culture techniques. The underlying mechanisms were also revealed. In addition, effects of Shikonin on the expression of cytokines in Transwell co-culture "conditioned" medium were investigated.

Results: Our results indicate that Shikonin preferentially inhibits cell proliferation and induces apoptosis in fibroblasts without affecting keratinocyte function. In addition, we found that the proliferation-inhibiting and apoptosis-inducing abilities of SHI might be triggered via MAPK and Bcl-2/Caspase 3 signalling pathways. Furthermore, SHI has been found to attenuate the expression of TGF-β1 in Transwell co-cultured "conditioned" medium.

Conclusions: The data generated from this study provides further evidence that supports the potential use of Shikonin as a novel scar remediation therapy.

No MeSH data available.


Related in: MedlinePlus

Effects of SHI on cell gene expression. a Gene Expression in Kc; b Gene expression in HSF. Kc and HSF were treated with various concentrations of SHI for 24 h and then total RNA was collected. After RNA extraction, first strand cDNA was synthesized. The cDNA sample was then amplified using qRT-PCR. The expression of the target gene was first normalized to GAPDH and then further converted to the percentage of the untreated control. Error bars indicate mean +/− SEM (n = 3). *p < 0.05 versus the untreated control. Statistical analysis was performed using One-way ANOVA and Tukey’s post-hoc test
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4537585&req=5

Fig6: Effects of SHI on cell gene expression. a Gene Expression in Kc; b Gene expression in HSF. Kc and HSF were treated with various concentrations of SHI for 24 h and then total RNA was collected. After RNA extraction, first strand cDNA was synthesized. The cDNA sample was then amplified using qRT-PCR. The expression of the target gene was first normalized to GAPDH and then further converted to the percentage of the untreated control. Error bars indicate mean +/− SEM (n = 3). *p < 0.05 versus the untreated control. Statistical analysis was performed using One-way ANOVA and Tukey’s post-hoc test

Mentions: In addition to CASP3 and BCL2, other apoptosis-related genes, namely BAX and CYCS [21] in both Kc and HSF, and collagen production-related genes, including COL1A1, COL3A1 and alpha-Smooth Muscle Actin (αSMA) [29] in HSF, were investigated using qRT-PCR (Fig. 6). As shown in Fig. 6a, SHI at 3 μg/mL significantly attenuated Kc CASP3 and BCL2 gene expression, while increasing BAX and CYCS gene expression when compared to the untreated control (p < 0.05). However, no effect at either 0.5 or 1 μg/mL SHI was observed on Kc gene expression. SHI at 3 μg/mL significantly down-regulated CASP3, BCL2, COL1A1, COL3A1 and αSMA and up-regulated BAX and CYCS expression in HSF compared to the untreated control (p < 0.05) (Fig. 6b). In addition, decreases in BCL2, COL1A1, COL3A1 and αSMA were observed in HSF after exposure to SHI at 1 μg/mL compared to the untreated control (p < 0.05). Furthermore, COL1A1 and αSMA gene expression were below the untreated control (p < 0.05) in HSF exposed to 0.5 μg/mL SHI. These data indicate that SHI regulates the expression of the indicated apoptosis- and collagen production-related genes in a dose-dependent manner. Interestingly, SHI at 0.5 μg/mL inhibits COL1A1 and αSMA gene expression without affecting apoptosis-related gene expression. RT-PCR has also been performed to detect the gene expression of COL1A1, COL3A1 and αSMA in Kc, however, the data obtained indicated that these three genes are “Undetectable”.Fig. 6


Investigating the potential of Shikonin as a novel hypertrophic scar treatment.

Fan C, Xie Y, Dong Y, Su Y, Upton Z - J. Biomed. Sci. (2015)

Effects of SHI on cell gene expression. a Gene Expression in Kc; b Gene expression in HSF. Kc and HSF were treated with various concentrations of SHI for 24 h and then total RNA was collected. After RNA extraction, first strand cDNA was synthesized. The cDNA sample was then amplified using qRT-PCR. The expression of the target gene was first normalized to GAPDH and then further converted to the percentage of the untreated control. Error bars indicate mean +/− SEM (n = 3). *p < 0.05 versus the untreated control. Statistical analysis was performed using One-way ANOVA and Tukey’s post-hoc test
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4537585&req=5

Fig6: Effects of SHI on cell gene expression. a Gene Expression in Kc; b Gene expression in HSF. Kc and HSF were treated with various concentrations of SHI for 24 h and then total RNA was collected. After RNA extraction, first strand cDNA was synthesized. The cDNA sample was then amplified using qRT-PCR. The expression of the target gene was first normalized to GAPDH and then further converted to the percentage of the untreated control. Error bars indicate mean +/− SEM (n = 3). *p < 0.05 versus the untreated control. Statistical analysis was performed using One-way ANOVA and Tukey’s post-hoc test
Mentions: In addition to CASP3 and BCL2, other apoptosis-related genes, namely BAX and CYCS [21] in both Kc and HSF, and collagen production-related genes, including COL1A1, COL3A1 and alpha-Smooth Muscle Actin (αSMA) [29] in HSF, were investigated using qRT-PCR (Fig. 6). As shown in Fig. 6a, SHI at 3 μg/mL significantly attenuated Kc CASP3 and BCL2 gene expression, while increasing BAX and CYCS gene expression when compared to the untreated control (p < 0.05). However, no effect at either 0.5 or 1 μg/mL SHI was observed on Kc gene expression. SHI at 3 μg/mL significantly down-regulated CASP3, BCL2, COL1A1, COL3A1 and αSMA and up-regulated BAX and CYCS expression in HSF compared to the untreated control (p < 0.05) (Fig. 6b). In addition, decreases in BCL2, COL1A1, COL3A1 and αSMA were observed in HSF after exposure to SHI at 1 μg/mL compared to the untreated control (p < 0.05). Furthermore, COL1A1 and αSMA gene expression were below the untreated control (p < 0.05) in HSF exposed to 0.5 μg/mL SHI. These data indicate that SHI regulates the expression of the indicated apoptosis- and collagen production-related genes in a dose-dependent manner. Interestingly, SHI at 0.5 μg/mL inhibits COL1A1 and αSMA gene expression without affecting apoptosis-related gene expression. RT-PCR has also been performed to detect the gene expression of COL1A1, COL3A1 and αSMA in Kc, however, the data obtained indicated that these three genes are “Undetectable”.Fig. 6

Bottom Line: Our results indicate that Shikonin preferentially inhibits cell proliferation and induces apoptosis in fibroblasts without affecting keratinocyte function.In addition, we found that the proliferation-inhibiting and apoptosis-inducing abilities of SHI might be triggered via MAPK and Bcl-2/Caspase 3 signalling pathways.Furthermore, SHI has been found to attenuate the expression of TGF-β1 in Transwell co-cultured "conditioned" medium.

View Article: PubMed Central - PubMed

Affiliation: Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia. c3.fan@connect.qut.edu.au.

ABSTRACT

Background: Hypertrophic scarring is a highly prevalent condition clinically and results from a decreased number of apoptotic fibroblasts and over-abundant production of collagen during scar formation following wound healing. Our previous studies indicated that Shikonin, an active component extracted from Radix Arnebiae, induces apoptosis and reduces collagen production in hypertrophic scar-derived fibroblasts. In the study reported here, we further evaluate the potential use of Shikonin as a novel scar remediation therapy by examining the effects of Shikonin on both keratinocytes and fibroblasts using Transwell® co-culture techniques. The underlying mechanisms were also revealed. In addition, effects of Shikonin on the expression of cytokines in Transwell co-culture "conditioned" medium were investigated.

Results: Our results indicate that Shikonin preferentially inhibits cell proliferation and induces apoptosis in fibroblasts without affecting keratinocyte function. In addition, we found that the proliferation-inhibiting and apoptosis-inducing abilities of SHI might be triggered via MAPK and Bcl-2/Caspase 3 signalling pathways. Furthermore, SHI has been found to attenuate the expression of TGF-β1 in Transwell co-cultured "conditioned" medium.

Conclusions: The data generated from this study provides further evidence that supports the potential use of Shikonin as a novel scar remediation therapy.

No MeSH data available.


Related in: MedlinePlus