Limits...
Change of strategy is required for malaria elimination: a case study in Purworejo District, Central Java Province, Indonesia.

Murhandarwati EE, Fuad A - Malar. J. (2015)

Bottom Line: Purworejo District, a malaria-endemic area in Java with an annual parasite incidence (API) of 0.05 per 1,000 population in 2009, aims to enter this elimination stage.API in each village in Purworejo and its surrounding districts from 2007 to 2011 was stratified into high, middle or low case incidence to show the spatiotemporal mapping pattern.These changes include timely measurements of malaria transmission, revision of the decentralized government system and optimizing the use of the district capitation fund followed by an effective technical implementation of the intervention strategy.

View Article: PubMed Central - PubMed

Affiliation: Center for Tropical Medicine and Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia. herdiana.elsa@gmail.com.

ABSTRACT

Background: Malaria has been targeted for elimination from Indonesia by 2030, with varying timelines for specific geographical areas based on disease endemicity. The regional deadline for malaria elimination for Java island, given the steady decrease of malaria cases, was the end of 2015. Purworejo District, a malaria-endemic area in Java with an annual parasite incidence (API) of 0.05 per 1,000 population in 2009, aims to enter this elimination stage. This study documents factors that affect incidence and spatial distribution of malaria in Purworejo, such as geomorphology, topography, health system issues, and identifies potential constraints and challenges to achieve the elimination stage, such as inter-districts coordination, decentralization policy and allocation of financial resources for the programme.

Methods: Historical malaria data from 2007 to 2011 were collected through secondary data, in-depth interviews and focus group discussions during study year (2010-2011). Malaria cases were mapped using the village-centroid shape file to visualize its distribution with geomorphologic characteristics overlay and spatial distribution of malaria. API in each village in Purworejo and its surrounding districts from 2007 to 2011 was stratified into high, middle or low case incidence to show the spatiotemporal mapping pattern.

Results: The spatiotemporal pattern of malaria cases in Purworejo and the adjacent districts demonstrate repeated concentrated occurrences of malaria in specific areas from 2007 to 2011. District health system issues, i.e., suboptimal coordination between primary care and referral systems, suboptimal inter-district collaboration for malaria surveillance, decentralization policy and the lack of resources, especially district budget allocations for the malaria programme, were major constraints for programme sustainability.

Conclusions: A new malaria elimination approach that fits the local disease transmission, intervention and political system is required. These changes include timely measurements of malaria transmission, revision of the decentralized government system and optimizing the use of the district capitation fund followed by an effective technical implementation of the intervention strategy.

No MeSH data available.


Related in: MedlinePlus

Topography and lithography of Purworejo.
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4537575&req=5

Fig2: Topography and lithography of Purworejo.

Mentions: The northeast, east and southeast area of Purworejo share similar geomorphology with Magelang and Kulon Progo districts, known as the Menoreh Hills, dominated by andesite, old andesite and Bemmelen formation (Fig. 2). As a consequence of its rough topography and andesite rock type, these areas have a low porosity that allows the accumulation of stagnant water on rocky outcrops. This occurs in the northern area as well, although the relief is not as rough as the eastern part. This condition supports the occurrence of a high water table (cerukan air) which is conducive for malaria vector breeding sites in this region, which includes ***Anopheles sundiacus, Anopheles barbirostris, Anopheles annularis, Anopheles minimus, Anopheles kochi, Anopheles aconitus, Anopheles tessellatus, Anopheles vagus, Anopheles subpictus, Anopheles indefinitus, Anopheles maculatus, Anopheles flavirostris, Anopheles balabacensis, and Anopheles barbumbrosus [19]. Vector species known to carry sporozoites as detected by PCR and ELISA methods include: A. aconitus, An. maculatus, An. balabacensis, An. vagus and An. barbirostris. Both P. vivax and P. falciparum were found. The confirmation of some Anopheles as malaria vectors in Purworejo or its adjacent districts has been reported by others [20, 21] as well as vector density studies and seasonal correlations [15, 22, 23]. The vector species found here bite primarily outdoors throughout the night and although primarily zoophilic, some species (An. aconitus and An. balabacensis) were found to be more anthropophilic (St Laurent B, pers comm).Fig. 2


Change of strategy is required for malaria elimination: a case study in Purworejo District, Central Java Province, Indonesia.

Murhandarwati EE, Fuad A - Malar. J. (2015)

Topography and lithography of Purworejo.
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4537575&req=5

Fig2: Topography and lithography of Purworejo.
Mentions: The northeast, east and southeast area of Purworejo share similar geomorphology with Magelang and Kulon Progo districts, known as the Menoreh Hills, dominated by andesite, old andesite and Bemmelen formation (Fig. 2). As a consequence of its rough topography and andesite rock type, these areas have a low porosity that allows the accumulation of stagnant water on rocky outcrops. This occurs in the northern area as well, although the relief is not as rough as the eastern part. This condition supports the occurrence of a high water table (cerukan air) which is conducive for malaria vector breeding sites in this region, which includes ***Anopheles sundiacus, Anopheles barbirostris, Anopheles annularis, Anopheles minimus, Anopheles kochi, Anopheles aconitus, Anopheles tessellatus, Anopheles vagus, Anopheles subpictus, Anopheles indefinitus, Anopheles maculatus, Anopheles flavirostris, Anopheles balabacensis, and Anopheles barbumbrosus [19]. Vector species known to carry sporozoites as detected by PCR and ELISA methods include: A. aconitus, An. maculatus, An. balabacensis, An. vagus and An. barbirostris. Both P. vivax and P. falciparum were found. The confirmation of some Anopheles as malaria vectors in Purworejo or its adjacent districts has been reported by others [20, 21] as well as vector density studies and seasonal correlations [15, 22, 23]. The vector species found here bite primarily outdoors throughout the night and although primarily zoophilic, some species (An. aconitus and An. balabacensis) were found to be more anthropophilic (St Laurent B, pers comm).Fig. 2

Bottom Line: Purworejo District, a malaria-endemic area in Java with an annual parasite incidence (API) of 0.05 per 1,000 population in 2009, aims to enter this elimination stage.API in each village in Purworejo and its surrounding districts from 2007 to 2011 was stratified into high, middle or low case incidence to show the spatiotemporal mapping pattern.These changes include timely measurements of malaria transmission, revision of the decentralized government system and optimizing the use of the district capitation fund followed by an effective technical implementation of the intervention strategy.

View Article: PubMed Central - PubMed

Affiliation: Center for Tropical Medicine and Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia. herdiana.elsa@gmail.com.

ABSTRACT

Background: Malaria has been targeted for elimination from Indonesia by 2030, with varying timelines for specific geographical areas based on disease endemicity. The regional deadline for malaria elimination for Java island, given the steady decrease of malaria cases, was the end of 2015. Purworejo District, a malaria-endemic area in Java with an annual parasite incidence (API) of 0.05 per 1,000 population in 2009, aims to enter this elimination stage. This study documents factors that affect incidence and spatial distribution of malaria in Purworejo, such as geomorphology, topography, health system issues, and identifies potential constraints and challenges to achieve the elimination stage, such as inter-districts coordination, decentralization policy and allocation of financial resources for the programme.

Methods: Historical malaria data from 2007 to 2011 were collected through secondary data, in-depth interviews and focus group discussions during study year (2010-2011). Malaria cases were mapped using the village-centroid shape file to visualize its distribution with geomorphologic characteristics overlay and spatial distribution of malaria. API in each village in Purworejo and its surrounding districts from 2007 to 2011 was stratified into high, middle or low case incidence to show the spatiotemporal mapping pattern.

Results: The spatiotemporal pattern of malaria cases in Purworejo and the adjacent districts demonstrate repeated concentrated occurrences of malaria in specific areas from 2007 to 2011. District health system issues, i.e., suboptimal coordination between primary care and referral systems, suboptimal inter-district collaboration for malaria surveillance, decentralization policy and the lack of resources, especially district budget allocations for the malaria programme, were major constraints for programme sustainability.

Conclusions: A new malaria elimination approach that fits the local disease transmission, intervention and political system is required. These changes include timely measurements of malaria transmission, revision of the decentralized government system and optimizing the use of the district capitation fund followed by an effective technical implementation of the intervention strategy.

No MeSH data available.


Related in: MedlinePlus