Limits...
Atypical emotional anticipation in high-functioning autism.

Palumbo L, Burnett HG, Jellema T - Mol Autism (2015)

Bottom Line: Specific experimental manipulations prior to the final facial expression of the video clip allowed examining contributions of bottom-up mechanisms (sequential contrast/context effects and representational momentum) and a top-down mechanism (emotional anticipation) to distortions in the perception of the final expression.We argue that in TD individuals the perceptual judgments of other's facial expressions were underpinned by an automatic emotional anticipation mechanism.In contrast, HFA individuals were primarily influenced by visual features, most notably the contrast between the start and end expressions, or pattern extrapolation.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Bedford Street South, L69 7ZA Liverpool, UK.

ABSTRACT

Background: Understanding and anticipating others' mental or emotional states relies on the processing of social cues, such as dynamic facial expressions. Individuals with high-functioning autism (HFA) may process these cues differently from individuals with typical development (TD) and purportedly use a 'mechanistic' rather than a 'mentalistic' approach, involving rule- and contingency-based interpretations of the stimuli. The study primarily aimed at examining whether the judgments of facial expressions made by individuals with TD and HFA would be similarly affected by the immediately preceding dynamic perceptual history of that face. A second aim was to explore possible differences in the mechanisms underpinning the perceptual judgments in the two groups.

Methods: Twenty-two adults with HFA and with TD, matched for age, gender and IQ, were tested in three experiments in which dynamic, 'ecologically valid' offsets of happy and angry facial expressions were presented. Participants evaluated the expression depicted in the last frame of the video clip by using a 5-point scale ranging from slightly angry via neutral to slightly happy. Specific experimental manipulations prior to the final facial expression of the video clip allowed examining contributions of bottom-up mechanisms (sequential contrast/context effects and representational momentum) and a top-down mechanism (emotional anticipation) to distortions in the perception of the final expression.

Results: In experiment 1, the two groups showed a very similar perceptual bias for the final expression of joy-to-neutral and anger-to-neutral videos (overshoot bias). In experiment 2, a change in the actor's identity during the clip removed the bias in the TD group, but not in the HFA group. In experiment 3, neutral-to-joy/anger-to-neutral sequences generated an undershoot bias (opposite to the overshoot) in the TD group, whereas no bias was observed in the HFA group.

Conclusions: We argue that in TD individuals the perceptual judgments of other's facial expressions were underpinned by an automatic emotional anticipation mechanism. In contrast, HFA individuals were primarily influenced by visual features, most notably the contrast between the start and end expressions, or pattern extrapolation. We critically discuss the proposition that automatic emotional anticipation may be induced by motor simulation of the perceived dynamic facial expressions and discuss its implications for autism.

No MeSH data available.


Related in: MedlinePlus

Illustration of the stimulus presentations in experiment 3. Top panel: Joy-to-neutral sequence in the control condition (top row) and neutral-to-joy-to-neutral sequence in the loop condition (bottom row). Bottom panel: Similar sequences but for anger-to-neutral (top row) and neutral-to-anger-to-neutral (bottom row)
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4537555&req=5

Fig7: Illustration of the stimulus presentations in experiment 3. Top panel: Joy-to-neutral sequence in the control condition (top row) and neutral-to-joy-to-neutral sequence in the loop condition (bottom row). Bottom panel: Similar sequences but for anger-to-neutral (top row) and neutral-to-anger-to-neutral (bottom row)

Mentions: Video clips displayed a neutral expression, which morphed via a maximally happy or angry expression back to the same neutral expression. The morphing sequence consisted of 19 interpolated frames, each 30 ms long. The first and the last frames both lasted 300 ms, making the entire sequence last for 1170 ms. The control condition (no loop) consisted of joy-to-neutral and anger-to-neutral video sequences (Fig. 7).Fig. 7


Atypical emotional anticipation in high-functioning autism.

Palumbo L, Burnett HG, Jellema T - Mol Autism (2015)

Illustration of the stimulus presentations in experiment 3. Top panel: Joy-to-neutral sequence in the control condition (top row) and neutral-to-joy-to-neutral sequence in the loop condition (bottom row). Bottom panel: Similar sequences but for anger-to-neutral (top row) and neutral-to-anger-to-neutral (bottom row)
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4537555&req=5

Fig7: Illustration of the stimulus presentations in experiment 3. Top panel: Joy-to-neutral sequence in the control condition (top row) and neutral-to-joy-to-neutral sequence in the loop condition (bottom row). Bottom panel: Similar sequences but for anger-to-neutral (top row) and neutral-to-anger-to-neutral (bottom row)
Mentions: Video clips displayed a neutral expression, which morphed via a maximally happy or angry expression back to the same neutral expression. The morphing sequence consisted of 19 interpolated frames, each 30 ms long. The first and the last frames both lasted 300 ms, making the entire sequence last for 1170 ms. The control condition (no loop) consisted of joy-to-neutral and anger-to-neutral video sequences (Fig. 7).Fig. 7

Bottom Line: Specific experimental manipulations prior to the final facial expression of the video clip allowed examining contributions of bottom-up mechanisms (sequential contrast/context effects and representational momentum) and a top-down mechanism (emotional anticipation) to distortions in the perception of the final expression.We argue that in TD individuals the perceptual judgments of other's facial expressions were underpinned by an automatic emotional anticipation mechanism.In contrast, HFA individuals were primarily influenced by visual features, most notably the contrast between the start and end expressions, or pattern extrapolation.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Bedford Street South, L69 7ZA Liverpool, UK.

ABSTRACT

Background: Understanding and anticipating others' mental or emotional states relies on the processing of social cues, such as dynamic facial expressions. Individuals with high-functioning autism (HFA) may process these cues differently from individuals with typical development (TD) and purportedly use a 'mechanistic' rather than a 'mentalistic' approach, involving rule- and contingency-based interpretations of the stimuli. The study primarily aimed at examining whether the judgments of facial expressions made by individuals with TD and HFA would be similarly affected by the immediately preceding dynamic perceptual history of that face. A second aim was to explore possible differences in the mechanisms underpinning the perceptual judgments in the two groups.

Methods: Twenty-two adults with HFA and with TD, matched for age, gender and IQ, were tested in three experiments in which dynamic, 'ecologically valid' offsets of happy and angry facial expressions were presented. Participants evaluated the expression depicted in the last frame of the video clip by using a 5-point scale ranging from slightly angry via neutral to slightly happy. Specific experimental manipulations prior to the final facial expression of the video clip allowed examining contributions of bottom-up mechanisms (sequential contrast/context effects and representational momentum) and a top-down mechanism (emotional anticipation) to distortions in the perception of the final expression.

Results: In experiment 1, the two groups showed a very similar perceptual bias for the final expression of joy-to-neutral and anger-to-neutral videos (overshoot bias). In experiment 2, a change in the actor's identity during the clip removed the bias in the TD group, but not in the HFA group. In experiment 3, neutral-to-joy/anger-to-neutral sequences generated an undershoot bias (opposite to the overshoot) in the TD group, whereas no bias was observed in the HFA group.

Conclusions: We argue that in TD individuals the perceptual judgments of other's facial expressions were underpinned by an automatic emotional anticipation mechanism. In contrast, HFA individuals were primarily influenced by visual features, most notably the contrast between the start and end expressions, or pattern extrapolation. We critically discuss the proposition that automatic emotional anticipation may be induced by motor simulation of the perceived dynamic facial expressions and discuss its implications for autism.

No MeSH data available.


Related in: MedlinePlus