Limits...
CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA.

Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M, De Leo G, Alessandro R - Mol. Cancer (2015)

Bottom Line: Experiments of gain and loss of function of H19 showed that this LncRNA plays an important role in the exosome-mediated phenotype of endothelial cells.Our data indicate a new exosome-mediated mechanism by which CSC-like CD90+ cells could influence their tumor microenvironment by promoting angiogenesis.Moreover, we suggest the lncRNA H19 as a putative therapeutic target in hepatocellular carcinoma.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Biotecnologie Cellulari ed Ematologia, Sapienza University of Rome, c/o Policlinico Umberto I, V Clinica Medica Viale Regina Elena, Rome, 324-00161, Italy. alice.conigliaro@uniroma1.it.

ABSTRACT

Background: CD90+ liver cancer cells have been described as cancer stem-cell-like (CSC), displaying aggressive and metastatic phenotype. Using two different in vitro models, already described as CD90+ liver cancer stem cells, our aim was to study their interaction with endothelial cells mediated by the release of exosomes.

Methods: Exosomes were isolated and characterized from both liver CD90+ cells and hepatoma cell lines. Endothelial cells were treated with exosomes, as well as transfected with a plasmid containing the full length sequence of the long non-coding RNA (lncRNA) H19. Molecular and functional analyses were done to characterize the endothelial phenotype after treatments.

Results: Exosomes released by CD90+ cancer cells, but not by parental hepatoma cells, modulated endothelial cells, promoting angiogenic phenotype and cell-to-cell adhesion. LncRNA profiling revealed that CD90+ cells were enriched in lncRNA H19, and released this through exosomes. Experiments of gain and loss of function of H19 showed that this LncRNA plays an important role in the exosome-mediated phenotype of endothelial cells.

Conclusions: Our data indicate a new exosome-mediated mechanism by which CSC-like CD90+ cells could influence their tumor microenvironment by promoting angiogenesis. Moreover, we suggest the lncRNA H19 as a putative therapeutic target in hepatocellular carcinoma.

No MeSH data available.


Related in: MedlinePlus

a Real-time PCR for H19, VEGF, VEGFR1 and ICAM1 from HUVECs transfected with H19 siRNA or negative scramble and treated with CD90 + exo. Data were normalized for β-actin and ΔΔct expressed as fold of induction siRNA H19 versus negative control. **p < 0.01, ***p < 0.001 b ELISA assay for VEGF detection on the supernatant from HUVECs treated as indicated above. ***p < 0.001
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4536801&req=5

Fig5: a Real-time PCR for H19, VEGF, VEGFR1 and ICAM1 from HUVECs transfected with H19 siRNA or negative scramble and treated with CD90 + exo. Data were normalized for β-actin and ΔΔct expressed as fold of induction siRNA H19 versus negative control. **p < 0.01, ***p < 0.001 b ELISA assay for VEGF detection on the supernatant from HUVECs treated as indicated above. ***p < 0.001

Mentions: Overall, these data demonstrate, for the first time to our knowledge, the ability of the lncRNA H19 to stimulate angiogenesis, and to favor cell-cell interaction, allowing us to postulate H19 as a possible mediator of pro-metastatic properties of exosomes released by CD90+ cells. To confirm our hypothesis, lncH19 was silenced in HUVECs concomitantly with CD90 + exo treatment. As shown in Fig. 5a, the silencing of H19 abrogated the exosome-mediated induction of VEGFR1, while no modulation was revealed in the expression of ICAM1. Concerning the VEGF, even if the reduction of transcript did not appear significant (5a), the release of VEGF protein induced by exosome treatment was totally inhibited by H19 silencing (5b).Fig. 5


CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA.

Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M, De Leo G, Alessandro R - Mol. Cancer (2015)

a Real-time PCR for H19, VEGF, VEGFR1 and ICAM1 from HUVECs transfected with H19 siRNA or negative scramble and treated with CD90 + exo. Data were normalized for β-actin and ΔΔct expressed as fold of induction siRNA H19 versus negative control. **p < 0.01, ***p < 0.001 b ELISA assay for VEGF detection on the supernatant from HUVECs treated as indicated above. ***p < 0.001
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4536801&req=5

Fig5: a Real-time PCR for H19, VEGF, VEGFR1 and ICAM1 from HUVECs transfected with H19 siRNA or negative scramble and treated with CD90 + exo. Data were normalized for β-actin and ΔΔct expressed as fold of induction siRNA H19 versus negative control. **p < 0.01, ***p < 0.001 b ELISA assay for VEGF detection on the supernatant from HUVECs treated as indicated above. ***p < 0.001
Mentions: Overall, these data demonstrate, for the first time to our knowledge, the ability of the lncRNA H19 to stimulate angiogenesis, and to favor cell-cell interaction, allowing us to postulate H19 as a possible mediator of pro-metastatic properties of exosomes released by CD90+ cells. To confirm our hypothesis, lncH19 was silenced in HUVECs concomitantly with CD90 + exo treatment. As shown in Fig. 5a, the silencing of H19 abrogated the exosome-mediated induction of VEGFR1, while no modulation was revealed in the expression of ICAM1. Concerning the VEGF, even if the reduction of transcript did not appear significant (5a), the release of VEGF protein induced by exosome treatment was totally inhibited by H19 silencing (5b).Fig. 5

Bottom Line: Experiments of gain and loss of function of H19 showed that this LncRNA plays an important role in the exosome-mediated phenotype of endothelial cells.Our data indicate a new exosome-mediated mechanism by which CSC-like CD90+ cells could influence their tumor microenvironment by promoting angiogenesis.Moreover, we suggest the lncRNA H19 as a putative therapeutic target in hepatocellular carcinoma.

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Biotecnologie Cellulari ed Ematologia, Sapienza University of Rome, c/o Policlinico Umberto I, V Clinica Medica Viale Regina Elena, Rome, 324-00161, Italy. alice.conigliaro@uniroma1.it.

ABSTRACT

Background: CD90+ liver cancer cells have been described as cancer stem-cell-like (CSC), displaying aggressive and metastatic phenotype. Using two different in vitro models, already described as CD90+ liver cancer stem cells, our aim was to study their interaction with endothelial cells mediated by the release of exosomes.

Methods: Exosomes were isolated and characterized from both liver CD90+ cells and hepatoma cell lines. Endothelial cells were treated with exosomes, as well as transfected with a plasmid containing the full length sequence of the long non-coding RNA (lncRNA) H19. Molecular and functional analyses were done to characterize the endothelial phenotype after treatments.

Results: Exosomes released by CD90+ cancer cells, but not by parental hepatoma cells, modulated endothelial cells, promoting angiogenic phenotype and cell-to-cell adhesion. LncRNA profiling revealed that CD90+ cells were enriched in lncRNA H19, and released this through exosomes. Experiments of gain and loss of function of H19 showed that this LncRNA plays an important role in the exosome-mediated phenotype of endothelial cells.

Conclusions: Our data indicate a new exosome-mediated mechanism by which CSC-like CD90+ cells could influence their tumor microenvironment by promoting angiogenesis. Moreover, we suggest the lncRNA H19 as a putative therapeutic target in hepatocellular carcinoma.

No MeSH data available.


Related in: MedlinePlus