Limits...
Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

Laskowska-Macios K, Nys J, Hu TT, Zapasnik M, Van der Perren A, Kossut M, Burnat K, Arckens L - Mol Brain (2015)

Bottom Line: Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region.Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109].Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland. karolina.laskowska.macios@gmail.com.

ABSTRACT

Background: Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014].

Results: In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109].

Conclusions: Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

No MeSH data available.


Related in: MedlinePlus

Semi-quantitative Western blotting for Hsc70. Hsc70 expression in BD animals showed lower levels in both regions of 2BD and also in the peripheral region of the 4BD group as compared to age-matched normal controls. Contrary to 4BD animals, Hsc70 expression in the 2N2BD group did not differ as compared to age-matched 4N group regions. Additionally, a lower level of Hsc70 was observed in central as compared to peripheral region in 1N kittens. Asterisks above bars denote significant differences (P < 0.05) for a given region between age groups of a given condition (normal or BD). Numbers above BD-related bars denote the % statistical difference between BD and age-matched normal control groups (P < 0.05). Results are means with ± SD
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4536594&req=5

Fig6: Semi-quantitative Western blotting for Hsc70. Hsc70 expression in BD animals showed lower levels in both regions of 2BD and also in the peripheral region of the 4BD group as compared to age-matched normal controls. Contrary to 4BD animals, Hsc70 expression in the 2N2BD group did not differ as compared to age-matched 4N group regions. Additionally, a lower level of Hsc70 was observed in central as compared to peripheral region in 1N kittens. Asterisks above bars denote significant differences (P < 0.05) for a given region between age groups of a given condition (normal or BD). Numbers above BD-related bars denote the % statistical difference between BD and age-matched normal control groups (P < 0.05). Results are means with ± SD

Mentions: Western analysis for Hsc70 revealed an opposite expression profile for early onset BD kittens compared with normal animals (Fig. 6). In normal kittens, a decrease from the age of 2 months into adulthood characterized both regions of area 17, and in the 1 N group Hsc70 expression was lower in central as compared to peripheral area 17 (Fig. 6). However, in early onset BD animals expression was lower and only reached normal levels by 6BD (Fig. 6). The effects of late onset 2N2BD differed markedly from those observed in early onset age-matched 4BD animals, but not from age-matched normal controls. Together, this could suggest that Hsc70 plays an important role in early development since it is mostly affected by a lack of pattern vision from eye opening.Fig. 6


Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

Laskowska-Macios K, Nys J, Hu TT, Zapasnik M, Van der Perren A, Kossut M, Burnat K, Arckens L - Mol Brain (2015)

Semi-quantitative Western blotting for Hsc70. Hsc70 expression in BD animals showed lower levels in both regions of 2BD and also in the peripheral region of the 4BD group as compared to age-matched normal controls. Contrary to 4BD animals, Hsc70 expression in the 2N2BD group did not differ as compared to age-matched 4N group regions. Additionally, a lower level of Hsc70 was observed in central as compared to peripheral region in 1N kittens. Asterisks above bars denote significant differences (P < 0.05) for a given region between age groups of a given condition (normal or BD). Numbers above BD-related bars denote the % statistical difference between BD and age-matched normal control groups (P < 0.05). Results are means with ± SD
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4536594&req=5

Fig6: Semi-quantitative Western blotting for Hsc70. Hsc70 expression in BD animals showed lower levels in both regions of 2BD and also in the peripheral region of the 4BD group as compared to age-matched normal controls. Contrary to 4BD animals, Hsc70 expression in the 2N2BD group did not differ as compared to age-matched 4N group regions. Additionally, a lower level of Hsc70 was observed in central as compared to peripheral region in 1N kittens. Asterisks above bars denote significant differences (P < 0.05) for a given region between age groups of a given condition (normal or BD). Numbers above BD-related bars denote the % statistical difference between BD and age-matched normal control groups (P < 0.05). Results are means with ± SD
Mentions: Western analysis for Hsc70 revealed an opposite expression profile for early onset BD kittens compared with normal animals (Fig. 6). In normal kittens, a decrease from the age of 2 months into adulthood characterized both regions of area 17, and in the 1 N group Hsc70 expression was lower in central as compared to peripheral area 17 (Fig. 6). However, in early onset BD animals expression was lower and only reached normal levels by 6BD (Fig. 6). The effects of late onset 2N2BD differed markedly from those observed in early onset age-matched 4BD animals, but not from age-matched normal controls. Together, this could suggest that Hsc70 plays an important role in early development since it is mostly affected by a lack of pattern vision from eye opening.Fig. 6

Bottom Line: Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region.Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109].Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland. karolina.laskowska.macios@gmail.com.

ABSTRACT

Background: Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014].

Results: In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109].

Conclusions: Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

No MeSH data available.


Related in: MedlinePlus