Limits...
STIL binding to Polo-box 3 of PLK4 regulates centriole duplication.

Arquint C, Gabryjonczyk AM, Imseng S, Böhm R, Sauer E, Hiller S, Nigg EA, Maier T - Elife (2015)

Bottom Line: STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region.In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding.We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.

View Article: PubMed Central - PubMed

Affiliation: Biozentrum, University of Basel, Basel, Switzerland.

ABSTRACT
Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box-peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.

No MeSH data available.


Related in: MedlinePlus

STIL–CC binding to PLK4-PB3 resembles an intramolecular interaction of PB2 and Pc in PLK1.(A) Schematic representation of previously observed substrate peptide binding modes in Polo-boxes (Cheng et al., 2003; Elia et al., 2003b; Xu et al., 2013; Park et al., 2014). (B) Left: Structural superposition of PLK4-PB3 (light blue) onto PB2 (orange) in the intact PLK1-PB1/2 structure (Elia et al., 2003b). The bound STIL-CC peptide (green) occupies the same position on PLK4-PB3 as the Polo-cap helix (PLK1-Pc, yellow), which binds intramolecularly in the PLK1-PB1/2 structure. Right: Schematic representation of the relative orientation of PLK1-PB1 and PLK1-PB2 and the position of the PLK1-Pc.DOI:http://dx.doi.org/10.7554/eLife.07888.018
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4530586&req=5

fig6s2: STIL–CC binding to PLK4-PB3 resembles an intramolecular interaction of PB2 and Pc in PLK1.(A) Schematic representation of previously observed substrate peptide binding modes in Polo-boxes (Cheng et al., 2003; Elia et al., 2003b; Xu et al., 2013; Park et al., 2014). (B) Left: Structural superposition of PLK4-PB3 (light blue) onto PB2 (orange) in the intact PLK1-PB1/2 structure (Elia et al., 2003b). The bound STIL-CC peptide (green) occupies the same position on PLK4-PB3 as the Polo-cap helix (PLK1-Pc, yellow), which binds intramolecularly in the PLK1-PB1/2 structure. Right: Schematic representation of the relative orientation of PLK1-PB1 and PLK1-PB2 and the position of the PLK1-Pc.DOI:http://dx.doi.org/10.7554/eLife.07888.018

Mentions: Polo-box domains are crucial mediators of the interaction of Polo-like kinases with their targets and have been demonstrated to interact with irregular substrate peptides and phosphopeptides. PLK1, for example, binds phosphopeptides containing a consensus Ser-[pSer/pThr]-[Pro/X] motif (Elia et al., 2003a) through a cleft within its PBD (comprising PB1 and PB2) (Cheng et al., 2003; Elia et al., 2003b; Sledz et al., 2011) and a neighboring binding site on PB1 is used for phospho-independent recognition of a Map205 peptide (Xu et al., 2013) (Figure 6—figure supplement 2A). The PLK4-PB1/2 domain has recently been shown to bind either two Cep192- or one Cep152-derived peptide in a mutually exclusive manner using large interaction interfaces extending along PB1 and PB2 (Park et al., 2014). PLK4-PB3 reveals a novel binding mode by interacting with the helical STIL-CC region in a leucine-zipper-style via the α1 helix with further hydrophobic contacts to the central β-sheet. Remarkably, this external target interaction of PLK4-PB3 closely resembles an intramolecular interaction observed in PLK1: there, the internal Polo-cap (Pc), an N-terminal extension of PLK1-PB1 which comprises an α-helix and a linker to PB1, directly binds to PLK1-PB2 and thereby determines the relative orientation of PB1 and PB2 (Elia et al., 2003b). The 17-residue α-helix of the Pc is shorter compared to the 31-residue STIL-CC, but forms a leucine-zipper with the α1-helix of PLK1-PB2, very much like STIL-CC with the α1-helix of PB3 in PLK4 (Figure 6—figure supplement 2B).


STIL binding to Polo-box 3 of PLK4 regulates centriole duplication.

Arquint C, Gabryjonczyk AM, Imseng S, Böhm R, Sauer E, Hiller S, Nigg EA, Maier T - Elife (2015)

STIL–CC binding to PLK4-PB3 resembles an intramolecular interaction of PB2 and Pc in PLK1.(A) Schematic representation of previously observed substrate peptide binding modes in Polo-boxes (Cheng et al., 2003; Elia et al., 2003b; Xu et al., 2013; Park et al., 2014). (B) Left: Structural superposition of PLK4-PB3 (light blue) onto PB2 (orange) in the intact PLK1-PB1/2 structure (Elia et al., 2003b). The bound STIL-CC peptide (green) occupies the same position on PLK4-PB3 as the Polo-cap helix (PLK1-Pc, yellow), which binds intramolecularly in the PLK1-PB1/2 structure. Right: Schematic representation of the relative orientation of PLK1-PB1 and PLK1-PB2 and the position of the PLK1-Pc.DOI:http://dx.doi.org/10.7554/eLife.07888.018
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4530586&req=5

fig6s2: STIL–CC binding to PLK4-PB3 resembles an intramolecular interaction of PB2 and Pc in PLK1.(A) Schematic representation of previously observed substrate peptide binding modes in Polo-boxes (Cheng et al., 2003; Elia et al., 2003b; Xu et al., 2013; Park et al., 2014). (B) Left: Structural superposition of PLK4-PB3 (light blue) onto PB2 (orange) in the intact PLK1-PB1/2 structure (Elia et al., 2003b). The bound STIL-CC peptide (green) occupies the same position on PLK4-PB3 as the Polo-cap helix (PLK1-Pc, yellow), which binds intramolecularly in the PLK1-PB1/2 structure. Right: Schematic representation of the relative orientation of PLK1-PB1 and PLK1-PB2 and the position of the PLK1-Pc.DOI:http://dx.doi.org/10.7554/eLife.07888.018
Mentions: Polo-box domains are crucial mediators of the interaction of Polo-like kinases with their targets and have been demonstrated to interact with irregular substrate peptides and phosphopeptides. PLK1, for example, binds phosphopeptides containing a consensus Ser-[pSer/pThr]-[Pro/X] motif (Elia et al., 2003a) through a cleft within its PBD (comprising PB1 and PB2) (Cheng et al., 2003; Elia et al., 2003b; Sledz et al., 2011) and a neighboring binding site on PB1 is used for phospho-independent recognition of a Map205 peptide (Xu et al., 2013) (Figure 6—figure supplement 2A). The PLK4-PB1/2 domain has recently been shown to bind either two Cep192- or one Cep152-derived peptide in a mutually exclusive manner using large interaction interfaces extending along PB1 and PB2 (Park et al., 2014). PLK4-PB3 reveals a novel binding mode by interacting with the helical STIL-CC region in a leucine-zipper-style via the α1 helix with further hydrophobic contacts to the central β-sheet. Remarkably, this external target interaction of PLK4-PB3 closely resembles an intramolecular interaction observed in PLK1: there, the internal Polo-cap (Pc), an N-terminal extension of PLK1-PB1 which comprises an α-helix and a linker to PB1, directly binds to PLK1-PB2 and thereby determines the relative orientation of PB1 and PB2 (Elia et al., 2003b). The 17-residue α-helix of the Pc is shorter compared to the 31-residue STIL-CC, but forms a leucine-zipper with the α1-helix of PLK1-PB2, very much like STIL-CC with the α1-helix of PB3 in PLK4 (Figure 6—figure supplement 2B).

Bottom Line: STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region.In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding.We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.

View Article: PubMed Central - PubMed

Affiliation: Biozentrum, University of Basel, Basel, Switzerland.

ABSTRACT
Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box-peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.

No MeSH data available.


Related in: MedlinePlus