Limits...
STIL binding to Polo-box 3 of PLK4 regulates centriole duplication.

Arquint C, Gabryjonczyk AM, Imseng S, Böhm R, Sauer E, Hiller S, Nigg EA, Maier T - Elife (2015)

Bottom Line: STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region.In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding.We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.

View Article: PubMed Central - PubMed

Affiliation: Biozentrum, University of Basel, Basel, Switzerland.

ABSTRACT
Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box-peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.

No MeSH data available.


Related in: MedlinePlus

Binding of STIL-CC to PLK4-PB3.(A) Overlay of 2D [15N,1H]-TROSY spectra of 0.8 mM [U-15N]-PLK4-PB3 (dark blue) and 0.6 mM [U-15N]-PLK4-PB3 in complex with unlabeled STIL-CC (light blue) recorded at 20°C. The sequence-specific resonance assignments for PLK4-PB3 are indicated. The assignments for PLK4-PB3 in complex with STIL-CC are not shown for clarity. Corresponding backbone amide resonances with chemical shift difference larger than two s.d. (see below) between apo and holo PLK4-PB3 are connected by red arrows. (B) Chemical shift perturbation of PLK4-PB3 amide moieties upon STIL–CC binding. The magnitude of one s.d. (0.12 p.p.m.) is indicated by an orange line and the magnitude of two s.d. (0.24 p.p.m.) is indicated by a red line. Asterisks indicate residues that are not assigned in both forms. (C) Chemical shift perturbation of PLK4-PB3 upon STIL binding, as mapped on the crystal structure of PLK4-PB3/STIL-CC in ribbon representation. Residues with (Δδ(HN) < 0.12 p.p.m.), (0.12 p.p.m. < Δδ(HN) < 0.24 p.p.m.), and (0.24 p.p.m. < Δδ(HN)) are shown in grey, orange and red, respectively. Unassigned residues are shaded in light grey. The STIL helix is shown green.DOI:http://dx.doi.org/10.7554/eLife.07888.011
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4530586&req=5

fig5s1: Binding of STIL-CC to PLK4-PB3.(A) Overlay of 2D [15N,1H]-TROSY spectra of 0.8 mM [U-15N]-PLK4-PB3 (dark blue) and 0.6 mM [U-15N]-PLK4-PB3 in complex with unlabeled STIL-CC (light blue) recorded at 20°C. The sequence-specific resonance assignments for PLK4-PB3 are indicated. The assignments for PLK4-PB3 in complex with STIL-CC are not shown for clarity. Corresponding backbone amide resonances with chemical shift difference larger than two s.d. (see below) between apo and holo PLK4-PB3 are connected by red arrows. (B) Chemical shift perturbation of PLK4-PB3 amide moieties upon STIL–CC binding. The magnitude of one s.d. (0.12 p.p.m.) is indicated by an orange line and the magnitude of two s.d. (0.24 p.p.m.) is indicated by a red line. Asterisks indicate residues that are not assigned in both forms. (C) Chemical shift perturbation of PLK4-PB3 upon STIL binding, as mapped on the crystal structure of PLK4-PB3/STIL-CC in ribbon representation. Residues with (Δδ(HN) < 0.12 p.p.m.), (0.12 p.p.m. < Δδ(HN) < 0.24 p.p.m.), and (0.24 p.p.m. < Δδ(HN)) are shown in grey, orange and red, respectively. Unassigned residues are shaded in light grey. The STIL helix is shown green.DOI:http://dx.doi.org/10.7554/eLife.07888.011


STIL binding to Polo-box 3 of PLK4 regulates centriole duplication.

Arquint C, Gabryjonczyk AM, Imseng S, Böhm R, Sauer E, Hiller S, Nigg EA, Maier T - Elife (2015)

Binding of STIL-CC to PLK4-PB3.(A) Overlay of 2D [15N,1H]-TROSY spectra of 0.8 mM [U-15N]-PLK4-PB3 (dark blue) and 0.6 mM [U-15N]-PLK4-PB3 in complex with unlabeled STIL-CC (light blue) recorded at 20°C. The sequence-specific resonance assignments for PLK4-PB3 are indicated. The assignments for PLK4-PB3 in complex with STIL-CC are not shown for clarity. Corresponding backbone amide resonances with chemical shift difference larger than two s.d. (see below) between apo and holo PLK4-PB3 are connected by red arrows. (B) Chemical shift perturbation of PLK4-PB3 amide moieties upon STIL–CC binding. The magnitude of one s.d. (0.12 p.p.m.) is indicated by an orange line and the magnitude of two s.d. (0.24 p.p.m.) is indicated by a red line. Asterisks indicate residues that are not assigned in both forms. (C) Chemical shift perturbation of PLK4-PB3 upon STIL binding, as mapped on the crystal structure of PLK4-PB3/STIL-CC in ribbon representation. Residues with (Δδ(HN) < 0.12 p.p.m.), (0.12 p.p.m. < Δδ(HN) < 0.24 p.p.m.), and (0.24 p.p.m. < Δδ(HN)) are shown in grey, orange and red, respectively. Unassigned residues are shaded in light grey. The STIL helix is shown green.DOI:http://dx.doi.org/10.7554/eLife.07888.011
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4530586&req=5

fig5s1: Binding of STIL-CC to PLK4-PB3.(A) Overlay of 2D [15N,1H]-TROSY spectra of 0.8 mM [U-15N]-PLK4-PB3 (dark blue) and 0.6 mM [U-15N]-PLK4-PB3 in complex with unlabeled STIL-CC (light blue) recorded at 20°C. The sequence-specific resonance assignments for PLK4-PB3 are indicated. The assignments for PLK4-PB3 in complex with STIL-CC are not shown for clarity. Corresponding backbone amide resonances with chemical shift difference larger than two s.d. (see below) between apo and holo PLK4-PB3 are connected by red arrows. (B) Chemical shift perturbation of PLK4-PB3 amide moieties upon STIL–CC binding. The magnitude of one s.d. (0.12 p.p.m.) is indicated by an orange line and the magnitude of two s.d. (0.24 p.p.m.) is indicated by a red line. Asterisks indicate residues that are not assigned in both forms. (C) Chemical shift perturbation of PLK4-PB3 upon STIL binding, as mapped on the crystal structure of PLK4-PB3/STIL-CC in ribbon representation. Residues with (Δδ(HN) < 0.12 p.p.m.), (0.12 p.p.m. < Δδ(HN) < 0.24 p.p.m.), and (0.24 p.p.m. < Δδ(HN)) are shown in grey, orange and red, respectively. Unassigned residues are shaded in light grey. The STIL helix is shown green.DOI:http://dx.doi.org/10.7554/eLife.07888.011
Bottom Line: STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region.In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding.We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.

View Article: PubMed Central - PubMed

Affiliation: Biozentrum, University of Basel, Basel, Switzerland.

ABSTRACT
Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box-peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.

No MeSH data available.


Related in: MedlinePlus