Limits...
Population Structure of and Conservation Strategies for Wild Pyrus ussuriensis Maxim. in China.

Wuyun T, Amo H, Xu J, Ma T, Uematsu C, Katayama H - PLoS ONE (2015)

Bottom Line: These values are relatively high when compared to those of other tree species.We determined 4 conservation units based on the clustering by nSSRs and cpSSRs, and geographic factor.This information is helpful in deciding the conservation strategies for wild Ussurian pear in China.

View Article: PubMed Central - PubMed

Affiliation: Paulownia Research and Development Center of China, Non-timber Forestry Research and Development of CAF, Weiwu Road, Zhengzhou City 450003, China.

ABSTRACT
Pyrus ussriensis Maxim. is native to the northern part of China, but whose habitats are currently being destroyed by environmental changes and human deforestation. An investigation of population structure and genetic diversity of wild Ussurian pear is a priority in order to acquire fundamental knowledge for conservation. A total of 153 individuals of wild Ussurian pear from the main habitats, Heilongjiang, Jilin, and Inner Mongolia in China, possessed low genetic diversity as a result of habitat fragmentation. The genetic diversity of the populations in Inner Mongolia and north east of Heilongjiang was especially low and there was the possibility of inbreeding. Wild Ussurian pears were divided into 5 groups based on the Bayesian clustering method using 20 nuclear SSRs (nSSRs) and 5 groups by haplotype distributions using 16 chloroplast SSRs (cpSSRs), and the populations in Inner Mongolia and north east of Heilongjiang represented unique genotypes. AMOVA indicated there was a 20.05% variation in nSSRs and a 44.40% variation in cpSSRs among populations. These values are relatively high when compared to those of other tree species. Haplotype E, positioned in the center of the cpSSR analysis network and showed the largest number of connections with other haplotypes, represented the most important haplotype. Inner Mongolia and the north east of Heilongjiang are two areas that need urgent conservation because of their genetic vulnerability and peculiarity. We determined 4 conservation units based on the clustering by nSSRs and cpSSRs, and geographic factor. This information is helpful in deciding the conservation strategies for wild Ussurian pear in China.

No MeSH data available.


Related in: MedlinePlus

(a) Percentages of membership of genotypes to clusters (q value) inferred at K = 5 applying only wild Ussurian pears in China to STRUCTURE analysis. (b) Geographical distribution of wild populations originating from Inner Mongolia, Heilongjiang and Jilin province. Pie charts represent the proportion of gene pools based on STRUCTURE analysis when only wild Ussurian pears were applied to the analysis (K = 5).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4529180&req=5

pone.0133686.g003: (a) Percentages of membership of genotypes to clusters (q value) inferred at K = 5 applying only wild Ussurian pears in China to STRUCTURE analysis. (b) Geographical distribution of wild populations originating from Inner Mongolia, Heilongjiang and Jilin province. Pie charts represent the proportion of gene pools based on STRUCTURE analysis when only wild Ussurian pears were applied to the analysis (K = 5).

Mentions: In the STRUCTURE analysis, the plot of the average log-likelihood values reached plateau at K = 10 (Figs 2A and 3). At K = 10, wild Ussurian pears were divided into 4 groups. But when only wild Ussurian pears were applied to STRUCTURE analysis, the average log-likelihood values reached plateau at K = 5 (Figs 2B and 4A). K = 5 reflects more reasonable result, because STRUCTURE analysis seek to identify the admixture among the species that when including the related species. So we divided wild Ussurian pears into 5 groups; (1) Inner Mongolia; IMQS, IMTHL, IMPJG, IMRSL, IMLMD, and IMSLG, (2) The north east of Heilongjiang; HLYCS3 and HLFYX, (3) the central part of Heilongjiang; HLSWX, HLYCS2 and HLYCS1, (4) Jilin; JLGZL, (5) the southern part of Heilongjiang; HLMTZ (Fig 3A). HLYCS2 was found to be admixtures of genotypes found in Jilin. Geographical distribution of 5 groups was shown in Fig 3B.


Population Structure of and Conservation Strategies for Wild Pyrus ussuriensis Maxim. in China.

Wuyun T, Amo H, Xu J, Ma T, Uematsu C, Katayama H - PLoS ONE (2015)

(a) Percentages of membership of genotypes to clusters (q value) inferred at K = 5 applying only wild Ussurian pears in China to STRUCTURE analysis. (b) Geographical distribution of wild populations originating from Inner Mongolia, Heilongjiang and Jilin province. Pie charts represent the proportion of gene pools based on STRUCTURE analysis when only wild Ussurian pears were applied to the analysis (K = 5).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4529180&req=5

pone.0133686.g003: (a) Percentages of membership of genotypes to clusters (q value) inferred at K = 5 applying only wild Ussurian pears in China to STRUCTURE analysis. (b) Geographical distribution of wild populations originating from Inner Mongolia, Heilongjiang and Jilin province. Pie charts represent the proportion of gene pools based on STRUCTURE analysis when only wild Ussurian pears were applied to the analysis (K = 5).
Mentions: In the STRUCTURE analysis, the plot of the average log-likelihood values reached plateau at K = 10 (Figs 2A and 3). At K = 10, wild Ussurian pears were divided into 4 groups. But when only wild Ussurian pears were applied to STRUCTURE analysis, the average log-likelihood values reached plateau at K = 5 (Figs 2B and 4A). K = 5 reflects more reasonable result, because STRUCTURE analysis seek to identify the admixture among the species that when including the related species. So we divided wild Ussurian pears into 5 groups; (1) Inner Mongolia; IMQS, IMTHL, IMPJG, IMRSL, IMLMD, and IMSLG, (2) The north east of Heilongjiang; HLYCS3 and HLFYX, (3) the central part of Heilongjiang; HLSWX, HLYCS2 and HLYCS1, (4) Jilin; JLGZL, (5) the southern part of Heilongjiang; HLMTZ (Fig 3A). HLYCS2 was found to be admixtures of genotypes found in Jilin. Geographical distribution of 5 groups was shown in Fig 3B.

Bottom Line: These values are relatively high when compared to those of other tree species.We determined 4 conservation units based on the clustering by nSSRs and cpSSRs, and geographic factor.This information is helpful in deciding the conservation strategies for wild Ussurian pear in China.

View Article: PubMed Central - PubMed

Affiliation: Paulownia Research and Development Center of China, Non-timber Forestry Research and Development of CAF, Weiwu Road, Zhengzhou City 450003, China.

ABSTRACT
Pyrus ussriensis Maxim. is native to the northern part of China, but whose habitats are currently being destroyed by environmental changes and human deforestation. An investigation of population structure and genetic diversity of wild Ussurian pear is a priority in order to acquire fundamental knowledge for conservation. A total of 153 individuals of wild Ussurian pear from the main habitats, Heilongjiang, Jilin, and Inner Mongolia in China, possessed low genetic diversity as a result of habitat fragmentation. The genetic diversity of the populations in Inner Mongolia and north east of Heilongjiang was especially low and there was the possibility of inbreeding. Wild Ussurian pears were divided into 5 groups based on the Bayesian clustering method using 20 nuclear SSRs (nSSRs) and 5 groups by haplotype distributions using 16 chloroplast SSRs (cpSSRs), and the populations in Inner Mongolia and north east of Heilongjiang represented unique genotypes. AMOVA indicated there was a 20.05% variation in nSSRs and a 44.40% variation in cpSSRs among populations. These values are relatively high when compared to those of other tree species. Haplotype E, positioned in the center of the cpSSR analysis network and showed the largest number of connections with other haplotypes, represented the most important haplotype. Inner Mongolia and the north east of Heilongjiang are two areas that need urgent conservation because of their genetic vulnerability and peculiarity. We determined 4 conservation units based on the clustering by nSSRs and cpSSRs, and geographic factor. This information is helpful in deciding the conservation strategies for wild Ussurian pear in China.

No MeSH data available.


Related in: MedlinePlus