Limits...
A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan.

Singh N, Jain N, Kumar R, Jain A, Singh NK, Rai V - Front Plant Sci (2015)

Bottom Line: However, it is often subjected to various abiotic and biotic stresses.In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory.Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea.

View Article: PubMed Central - PubMed

Affiliation: Functional Genomics, National Research Centre on Plant Biotechnology , New Delhi, India.

ABSTRACT
Pigeonpea is an important legume crop with high protein content. However, it is often subjected to various abiotic and biotic stresses. Proteomics is a state-of-the-art technique used to analyze the protein profiling of a tissue for deciphering the molecular entities that could be manipulated for developing crops resistant to these stresses. In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory. Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea. Here, we report tissue-specific protein extraction protocols representing vegetative (young leaves), and reproductive (flowers and seeds) organs and their subsequent analysis on 2-dimensional gel electrophoresis. The study explicitly demonstrated that the efficacy of a particular protein extraction protocol is dependent on the different tissues, such as leaves, flowers and seeds that differ in their structure and metabolic constituents. For instance, phenol-based protocol showed an efficacy toward higher protein yield, better spot resolution and a minimal streaking on 2-DE gel for both leaves and flowers. Protein extraction from seeds was best achieved by employing phosphate-TCA-acetone protocol.

No MeSH data available.


Related in: MedlinePlus

Tissue-specific protein pellets using Phenol, P+TCA acetone and TCA acetone protein extraction methods. The tissues of mature seed, green leaf and fully opened flower of pigeonpea variety ASHA were ground to a fine powder in liquid nitrogen and then rinsed with Phenol (A,D,G), P+ TCA acetone (B,E,H) and TCA acetone (C,F,I).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4528993&req=5

Figure 2: Tissue-specific protein pellets using Phenol, P+TCA acetone and TCA acetone protein extraction methods. The tissues of mature seed, green leaf and fully opened flower of pigeonpea variety ASHA were ground to a fine powder in liquid nitrogen and then rinsed with Phenol (A,D,G), P+ TCA acetone (B,E,H) and TCA acetone (C,F,I).

Mentions: In the present study quality and quantity of proteins extracted using Protocols 1–3 from different tissues were determined and compared. Irrespective of the tissue used for protein extraction, protocol based on phenol extraction gave optimal yield compared with other two protocols in vegetative and reproductive tissues (Table 1, Figure 2). The phenol extraction method has normally being used for extracting proteins from recalcitrant tissues from diverse plant species (Wang et al., 2003; Saravanan and Rose, 2004; Carpentier et al., 2005). Earlier studies reported the efficacies of TCA/acetone and phenol-based protocols for extracting proteins from recalcitrant tissues with the latter method was relatively more efficient in removing interfering substances (Saravanan and Rose, 2004; Carpentier et al., 2005).


A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan.

Singh N, Jain N, Kumar R, Jain A, Singh NK, Rai V - Front Plant Sci (2015)

Tissue-specific protein pellets using Phenol, P+TCA acetone and TCA acetone protein extraction methods. The tissues of mature seed, green leaf and fully opened flower of pigeonpea variety ASHA were ground to a fine powder in liquid nitrogen and then rinsed with Phenol (A,D,G), P+ TCA acetone (B,E,H) and TCA acetone (C,F,I).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4528993&req=5

Figure 2: Tissue-specific protein pellets using Phenol, P+TCA acetone and TCA acetone protein extraction methods. The tissues of mature seed, green leaf and fully opened flower of pigeonpea variety ASHA were ground to a fine powder in liquid nitrogen and then rinsed with Phenol (A,D,G), P+ TCA acetone (B,E,H) and TCA acetone (C,F,I).
Mentions: In the present study quality and quantity of proteins extracted using Protocols 1–3 from different tissues were determined and compared. Irrespective of the tissue used for protein extraction, protocol based on phenol extraction gave optimal yield compared with other two protocols in vegetative and reproductive tissues (Table 1, Figure 2). The phenol extraction method has normally being used for extracting proteins from recalcitrant tissues from diverse plant species (Wang et al., 2003; Saravanan and Rose, 2004; Carpentier et al., 2005). Earlier studies reported the efficacies of TCA/acetone and phenol-based protocols for extracting proteins from recalcitrant tissues with the latter method was relatively more efficient in removing interfering substances (Saravanan and Rose, 2004; Carpentier et al., 2005).

Bottom Line: However, it is often subjected to various abiotic and biotic stresses.In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory.Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea.

View Article: PubMed Central - PubMed

Affiliation: Functional Genomics, National Research Centre on Plant Biotechnology , New Delhi, India.

ABSTRACT
Pigeonpea is an important legume crop with high protein content. However, it is often subjected to various abiotic and biotic stresses. Proteomics is a state-of-the-art technique used to analyze the protein profiling of a tissue for deciphering the molecular entities that could be manipulated for developing crops resistant to these stresses. In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory. Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea. Here, we report tissue-specific protein extraction protocols representing vegetative (young leaves), and reproductive (flowers and seeds) organs and their subsequent analysis on 2-dimensional gel electrophoresis. The study explicitly demonstrated that the efficacy of a particular protein extraction protocol is dependent on the different tissues, such as leaves, flowers and seeds that differ in their structure and metabolic constituents. For instance, phenol-based protocol showed an efficacy toward higher protein yield, better spot resolution and a minimal streaking on 2-DE gel for both leaves and flowers. Protein extraction from seeds was best achieved by employing phosphate-TCA-acetone protocol.

No MeSH data available.


Related in: MedlinePlus