Limits...
Secondary metabolites in fungus-plant interactions.

Pusztahelyi T, Holb IJ, Pócsi I - Front Plant Sci (2015)

Bottom Line: The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes.It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production.New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen Debrecen, Hungary.

ABSTRACT
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

No MeSH data available.


Small metabolites as effectors in SAR signaling. Methyl salicylate, the abietane diterpenoid dehydroabietinal, pipecolic acid from lysine catabolism, and the dicarboxylic acid azelaic acid are effectors in SAR signaling additionally to SA. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4527079&req=5

Figure 6: Small metabolites as effectors in SAR signaling. Methyl salicylate, the abietane diterpenoid dehydroabietinal, pipecolic acid from lysine catabolism, and the dicarboxylic acid azelaic acid are effectors in SAR signaling additionally to SA. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).

Mentions: SA synthesis is a crucial way a plant responds to a biotic attack and involved in both local and systemic resistance (Janda and Ruelland, 2014). Systemic acquired resistance (SAR) is a plant immune response (Shah et al., 2014) that is induced after a local infection and confers immunity throughout the plant to a broad spectrum of pathogens. The onset of SAR (Durrant and Dong, 2004) is usually associated not only with increased levels of SA but additional small metabolites (Figure 6) have also been involved as effectors. Some of these metabolites have been implicated in the rapid activation of defenses in SAR in response to subsequent exposure to the pathogen that called priming (Shah et al., 2014).


Secondary metabolites in fungus-plant interactions.

Pusztahelyi T, Holb IJ, Pócsi I - Front Plant Sci (2015)

Small metabolites as effectors in SAR signaling. Methyl salicylate, the abietane diterpenoid dehydroabietinal, pipecolic acid from lysine catabolism, and the dicarboxylic acid azelaic acid are effectors in SAR signaling additionally to SA. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4527079&req=5

Figure 6: Small metabolites as effectors in SAR signaling. Methyl salicylate, the abietane diterpenoid dehydroabietinal, pipecolic acid from lysine catabolism, and the dicarboxylic acid azelaic acid are effectors in SAR signaling additionally to SA. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
Mentions: SA synthesis is a crucial way a plant responds to a biotic attack and involved in both local and systemic resistance (Janda and Ruelland, 2014). Systemic acquired resistance (SAR) is a plant immune response (Shah et al., 2014) that is induced after a local infection and confers immunity throughout the plant to a broad spectrum of pathogens. The onset of SAR (Durrant and Dong, 2004) is usually associated not only with increased levels of SA but additional small metabolites (Figure 6) have also been involved as effectors. Some of these metabolites have been implicated in the rapid activation of defenses in SAR in response to subsequent exposure to the pathogen that called priming (Shah et al., 2014).

Bottom Line: The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes.It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production.New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen Debrecen, Hungary.

ABSTRACT
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

No MeSH data available.