Limits...
Secondary metabolites in fungus-plant interactions.

Pusztahelyi T, Holb IJ, Pócsi I - Front Plant Sci (2015)

Bottom Line: The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes.It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production.New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen Debrecen, Hungary.

ABSTRACT
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

No MeSH data available.


Structures of representatives of Aspergillus SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4527079&req=5

Figure 4: Structures of representatives of Aspergillus SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).

Mentions: Nitrogen limitation have appeared to be an essential stimulus for the activation of virulence functions in phytopathogenic fungi. The ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations (Tudzynski, 2014). Amino acids are required for SM biosynthesis, especially for the NRPS. Amino acid limitation in fungi results in the induction of a genetic network that induces genes for enzymes of multiple amino acid biosynthetic pathways as well as for aminoacyl-tRNA synthases. Inorganic N sources are also affect SM production. Ammonium activated the expression of aflatoxin (AF) (Figure 4) genes (Feng and Leonard, 1998), while nitrate served as an inhibitor of AF biosynthesis of Aspergillus parasiticus (Bagheri-Gavkosh et al., 2009). In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr were central players of the nitrogen regulatory network (Tudzynski, 2014). The importance of global nitrogen regulators for the development of pathogenicity was shown for M. grisea (Talbot et al., 1997) and many other fungal plant pathogens, e.g., Colletotrichum lindemuthianum, C. acutatum, and F. oxysporum (Kroll et al., 2014). In F. graminearum, which causes crop disease, nitrogen starvation activated the trichothecene pathway and induced the biosynthesis of the DON toxin (Figure 3) that was identified as a virulence factor (Desjardins et al., 1993; Audenaert et al., 2014), similar to the host selective T-toxin from Cochliobolus heterostrophus (Bipolaris maydis) (Turgeon and Baker, 2007) and the cyclic peptide AM-toxin (Figure 2) from Alternaria alternata (Markham and Hille, 2001).


Secondary metabolites in fungus-plant interactions.

Pusztahelyi T, Holb IJ, Pócsi I - Front Plant Sci (2015)

Structures of representatives of Aspergillus SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4527079&req=5

Figure 4: Structures of representatives of Aspergillus SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
Mentions: Nitrogen limitation have appeared to be an essential stimulus for the activation of virulence functions in phytopathogenic fungi. The ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations (Tudzynski, 2014). Amino acids are required for SM biosynthesis, especially for the NRPS. Amino acid limitation in fungi results in the induction of a genetic network that induces genes for enzymes of multiple amino acid biosynthetic pathways as well as for aminoacyl-tRNA synthases. Inorganic N sources are also affect SM production. Ammonium activated the expression of aflatoxin (AF) (Figure 4) genes (Feng and Leonard, 1998), while nitrate served as an inhibitor of AF biosynthesis of Aspergillus parasiticus (Bagheri-Gavkosh et al., 2009). In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr were central players of the nitrogen regulatory network (Tudzynski, 2014). The importance of global nitrogen regulators for the development of pathogenicity was shown for M. grisea (Talbot et al., 1997) and many other fungal plant pathogens, e.g., Colletotrichum lindemuthianum, C. acutatum, and F. oxysporum (Kroll et al., 2014). In F. graminearum, which causes crop disease, nitrogen starvation activated the trichothecene pathway and induced the biosynthesis of the DON toxin (Figure 3) that was identified as a virulence factor (Desjardins et al., 1993; Audenaert et al., 2014), similar to the host selective T-toxin from Cochliobolus heterostrophus (Bipolaris maydis) (Turgeon and Baker, 2007) and the cyclic peptide AM-toxin (Figure 2) from Alternaria alternata (Markham and Hille, 2001).

Bottom Line: The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes.It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production.New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen Debrecen, Hungary.

ABSTRACT
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

No MeSH data available.