Limits...
Secondary metabolites in fungus-plant interactions.

Pusztahelyi T, Holb IJ, Pócsi I - Front Plant Sci (2015)

Bottom Line: The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes.It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production.New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen Debrecen, Hungary.

ABSTRACT
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

No MeSH data available.


Structures of representatives of Fusarium SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4527079&req=5

Figure 3: Structures of representatives of Fusarium SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).

Mentions: Light is a requirement for deoxynivalenol (DON) toxin (Figure 3) to exert its deleterious effect similarly to the induction of programmed cell death (PCD) during Botrytis infections (Govrin and Levine, 2002). This might reflect the plant's need for light to produce reactive oxygen during the oxidative burst (Howlett, 2006). Meanwhile, regulation of toxin production is also light-dependent (Avalos and Estrada, 2010) through one of the most important light-regulatory protein complex, the velvet complex, comprising at least FgVe1 and FgVeB in Fusarium with homologous components in other fungi (Yang et al., 2013; Amare and Keller, 2014). FgVe1 homolog VeA has been demonstrated to regulate trichothecene production at the level of the biosynthetic genes Tri4 and Tri5 and the transcriptional regulator genes Tri6 and Tri10 (Jiang et al., 2011; Merhej et al., 2012). Disruption of VeB gene led to several phenotypic defects, including suppression of aerial hyphae formation, reduced hyphal hydrophobicity, highly increased conidiation and reduced DON biosynthesis through the regulation of Tri5 and Tri6 (Jiang et al., 2012). Deletion of LaeA (a nuclear regulator from the velvet complex) homolog Lae1 in F. verticillioides resulted in reduced expression of gene clusters responsible for synthesis of the SMs bikaverin, fumonisins (Figure 3), fusaric acid and fusarins (Figure 3). Analysis of SMs in the F. verticillioides LAE1 mutant revealed differences of regulation from that of in F. fujikuroi LAE1 mutant (Wiemann et al., 2010) as bikaverin production was reduced, but the amount of fumonisin B1 (FB1) (Figure 3) remained unchanged (Butchko et al., 2012).


Secondary metabolites in fungus-plant interactions.

Pusztahelyi T, Holb IJ, Pócsi I - Front Plant Sci (2015)

Structures of representatives of Fusarium SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4527079&req=5

Figure 3: Structures of representatives of Fusarium SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
Mentions: Light is a requirement for deoxynivalenol (DON) toxin (Figure 3) to exert its deleterious effect similarly to the induction of programmed cell death (PCD) during Botrytis infections (Govrin and Levine, 2002). This might reflect the plant's need for light to produce reactive oxygen during the oxidative burst (Howlett, 2006). Meanwhile, regulation of toxin production is also light-dependent (Avalos and Estrada, 2010) through one of the most important light-regulatory protein complex, the velvet complex, comprising at least FgVe1 and FgVeB in Fusarium with homologous components in other fungi (Yang et al., 2013; Amare and Keller, 2014). FgVe1 homolog VeA has been demonstrated to regulate trichothecene production at the level of the biosynthetic genes Tri4 and Tri5 and the transcriptional regulator genes Tri6 and Tri10 (Jiang et al., 2011; Merhej et al., 2012). Disruption of VeB gene led to several phenotypic defects, including suppression of aerial hyphae formation, reduced hyphal hydrophobicity, highly increased conidiation and reduced DON biosynthesis through the regulation of Tri5 and Tri6 (Jiang et al., 2012). Deletion of LaeA (a nuclear regulator from the velvet complex) homolog Lae1 in F. verticillioides resulted in reduced expression of gene clusters responsible for synthesis of the SMs bikaverin, fumonisins (Figure 3), fusaric acid and fusarins (Figure 3). Analysis of SMs in the F. verticillioides LAE1 mutant revealed differences of regulation from that of in F. fujikuroi LAE1 mutant (Wiemann et al., 2010) as bikaverin production was reduced, but the amount of fumonisin B1 (FB1) (Figure 3) remained unchanged (Butchko et al., 2012).

Bottom Line: The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes.It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production.New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen Debrecen, Hungary.

ABSTRACT
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

No MeSH data available.