Limits...
Secondary metabolites in fungus-plant interactions.

Pusztahelyi T, Holb IJ, Pócsi I - Front Plant Sci (2015)

Bottom Line: The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes.It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production.New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen Debrecen, Hungary.

ABSTRACT
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

No MeSH data available.


Structures of representatives of Alternaria SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4527079&req=5

Figure 2: Structures of representatives of Alternaria SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).

Mentions: In the Macrophomina phaseolina anamorphic fungus from the ascomycete family Botryosphaeriaceae, Islam et al. (2012) identified 75 putative SM genes compared with 32 in M. grisea, 37 in B. cinerea, 29 in S. sclerotiorum, and 37 in F. graminearum. A high number of NRPSs which catalyze the production of cyclic peptides including numerous toxins were also found (Table 1). In M. phaseolina an NRPS, which showed 46% identity to Cochliobolus carbonum HST1, the key enzyme responsible for the biosynthesis of the maize HST cyclic tetrapeptide HC-toxin (Figure 2) (Panaccione, 1993; Walton, 2006). In 10 different Fusarium species including F. graminearum, F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum comparative analyses of PKSs and NRPSs led to identification of 52 NRPSs and 52 PKSs orthology groups, respectively (Hansen et al., 2015). A core collection of eight NRPSs (NRPS2–4, 6, 10–13) and two PKSs (PKS3 and PKS7) were only conserved in the investigated strains. The genome of the saprophytic model organism A. nidulans contained 56 putative SM core genes including 27 PKS, two PKS-like, 11 NRPS, 15 NRPS-like genes, and one hybrid NRPS-PKS gene (Yaegashi et al., 2014).


Secondary metabolites in fungus-plant interactions.

Pusztahelyi T, Holb IJ, Pócsi I - Front Plant Sci (2015)

Structures of representatives of Alternaria SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4527079&req=5

Figure 2: Structures of representatives of Alternaria SMs. Source: National Center for Biotechnology Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
Mentions: In the Macrophomina phaseolina anamorphic fungus from the ascomycete family Botryosphaeriaceae, Islam et al. (2012) identified 75 putative SM genes compared with 32 in M. grisea, 37 in B. cinerea, 29 in S. sclerotiorum, and 37 in F. graminearum. A high number of NRPSs which catalyze the production of cyclic peptides including numerous toxins were also found (Table 1). In M. phaseolina an NRPS, which showed 46% identity to Cochliobolus carbonum HST1, the key enzyme responsible for the biosynthesis of the maize HST cyclic tetrapeptide HC-toxin (Figure 2) (Panaccione, 1993; Walton, 2006). In 10 different Fusarium species including F. graminearum, F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum comparative analyses of PKSs and NRPSs led to identification of 52 NRPSs and 52 PKSs orthology groups, respectively (Hansen et al., 2015). A core collection of eight NRPSs (NRPS2–4, 6, 10–13) and two PKSs (PKS3 and PKS7) were only conserved in the investigated strains. The genome of the saprophytic model organism A. nidulans contained 56 putative SM core genes including 27 PKS, two PKS-like, 11 NRPS, 15 NRPS-like genes, and one hybrid NRPS-PKS gene (Yaegashi et al., 2014).

Bottom Line: The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes.It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production.New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

View Article: PubMed Central - PubMed

Affiliation: Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen Debrecen, Hungary.

ABSTRACT
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

No MeSH data available.