Limits...
Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature.

Leng F, Tan CM, Pecht M - Sci Rep (2015)

Bottom Line: However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found.In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range.Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

View Article: PubMed Central - PubMed

Affiliation: 1] Nanyang Technological University, School of Electrical Electronics Engineering, Blk S2.1, 50 Nanyang Avenue, Singapore 639798, Singapore [2] TUM CREATE PTE LTD, 1 Create Way, #10-02 Create Tower, Singapore 138602, Singapore [3] Global Energy Quality And Reliability Technology (G.E.Q.A.R.T). PTE.LTD, Sims Residence, 8 Lorong, 29 Geylang #06-12, Singapore 387882, Singapore.

ABSTRACT
Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

No MeSH data available.


Related in: MedlinePlus

The aging of rate constant vs. temperature.The percentage degradations vs. cycle number at different temperatures are shown in the inserted Table.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526891&req=5

f7: The aging of rate constant vs. temperature.The percentage degradations vs. cycle number at different temperatures are shown in the inserted Table.

Mentions: The degradation of m1 can be due to two mechanisms. One is the formation of surface film and its subsequent modification on the electrode, and another one is the structural/phase changes of the electrode. Zhang et al.20 and Ramadass et al.8 observed the formation of the surface film as a result of the oxidation at the electrode/electrolyte interface. Maher et al.21 identified the structural and phase changes of the LCO electrode. The presence of surface film (also called SEI) lowers the reaction rate of both Li+ insertion and de-intercalation20, and the structural/phase change of the electrode from a hexagonal phase (less stable, but active) to a cubic phase or spinel structure (less active) also reduces the charge transfer rate. Hence, both mechanisms result in a decrease in the charge transfer rate (K) with cycling. This charge transfer rate shows the rate of Li+ transport as it goes from electrode to electrolyte and from electrolyte to electrode22. The above-mentioned two mechanisms will reduce the transport rate, and this is indeed observed in Fig. 7. Both will also increase the electrode’s impedance, and again this is observed in Fig. 8.


Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature.

Leng F, Tan CM, Pecht M - Sci Rep (2015)

The aging of rate constant vs. temperature.The percentage degradations vs. cycle number at different temperatures are shown in the inserted Table.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526891&req=5

f7: The aging of rate constant vs. temperature.The percentage degradations vs. cycle number at different temperatures are shown in the inserted Table.
Mentions: The degradation of m1 can be due to two mechanisms. One is the formation of surface film and its subsequent modification on the electrode, and another one is the structural/phase changes of the electrode. Zhang et al.20 and Ramadass et al.8 observed the formation of the surface film as a result of the oxidation at the electrode/electrolyte interface. Maher et al.21 identified the structural and phase changes of the LCO electrode. The presence of surface film (also called SEI) lowers the reaction rate of both Li+ insertion and de-intercalation20, and the structural/phase change of the electrode from a hexagonal phase (less stable, but active) to a cubic phase or spinel structure (less active) also reduces the charge transfer rate. Hence, both mechanisms result in a decrease in the charge transfer rate (K) with cycling. This charge transfer rate shows the rate of Li+ transport as it goes from electrode to electrolyte and from electrolyte to electrode22. The above-mentioned two mechanisms will reduce the transport rate, and this is indeed observed in Fig. 7. Both will also increase the electrode’s impedance, and again this is observed in Fig. 8.

Bottom Line: However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found.In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range.Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

View Article: PubMed Central - PubMed

Affiliation: 1] Nanyang Technological University, School of Electrical Electronics Engineering, Blk S2.1, 50 Nanyang Avenue, Singapore 639798, Singapore [2] TUM CREATE PTE LTD, 1 Create Way, #10-02 Create Tower, Singapore 138602, Singapore [3] Global Energy Quality And Reliability Technology (G.E.Q.A.R.T). PTE.LTD, Sims Residence, 8 Lorong, 29 Geylang #06-12, Singapore 387882, Singapore.

ABSTRACT
Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

No MeSH data available.


Related in: MedlinePlus