Limits...
Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature.

Leng F, Tan CM, Pecht M - Sci Rep (2015)

Bottom Line: However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found.In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range.Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

View Article: PubMed Central - PubMed

Affiliation: 1] Nanyang Technological University, School of Electrical Electronics Engineering, Blk S2.1, 50 Nanyang Avenue, Singapore 639798, Singapore [2] TUM CREATE PTE LTD, 1 Create Way, #10-02 Create Tower, Singapore 138602, Singapore [3] Global Energy Quality And Reliability Technology (G.E.Q.A.R.T). PTE.LTD, Sims Residence, 8 Lorong, 29 Geylang #06-12, Singapore 387882, Singapore.

ABSTRACT
Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

No MeSH data available.


Related in: MedlinePlus

Comparison of an experimental and computed discharge curve (using ECBE model) of a Sony prismatic cell.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526891&req=5

f2: Comparison of an experimental and computed discharge curve (using ECBE model) of a Sony prismatic cell.

Mentions: For the discharging experiments, four cells were discharged at a constant current of 1C to a cut-off voltage of 2.7 V. One cell was cycled at 25 °C, a separate cell was cycled at 35 °C, a third cell was cycled at 45 °C and fourth cell at 55 °C. The terminal voltage and current of the cells are monitored on-line to ensure safety and recorded every 30s as input parameters for fitting process. The charging/discharging profile was repeated up to 260 cycles. Six particular cycle numbers, namely 1, 50, 100, 150, 200, and 250 were selected to investigate the cycled cells. Figure 2 shows a typical discharge curve of a lithium-ion cell. The red curve (the curve with data points on it) is computed using the ECBE battery model. Simulated Annealing12 is used to obtain an approximated global minima, and non-linear regression method, Levenberg-Marquart fitting algorithm (LMA) is employed to provide a rapid and accurate estimate of the local minima1314. Figure 3 shows the flow chart of the computation in ECBE model. With these algorithms, a good agreement can be seen between the computed and experimental discharge curves. Note that the ECBE model is valid up to 50% SoC, and the initial fast discharging portion is excluded from the model. Here SoC is computed as Q/Qm where Qm is the initial maximum charge stored in LiB and it is computed using the ECBE model11, and as evaluated using the Coulomb counting method.


Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature.

Leng F, Tan CM, Pecht M - Sci Rep (2015)

Comparison of an experimental and computed discharge curve (using ECBE model) of a Sony prismatic cell.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526891&req=5

f2: Comparison of an experimental and computed discharge curve (using ECBE model) of a Sony prismatic cell.
Mentions: For the discharging experiments, four cells were discharged at a constant current of 1C to a cut-off voltage of 2.7 V. One cell was cycled at 25 °C, a separate cell was cycled at 35 °C, a third cell was cycled at 45 °C and fourth cell at 55 °C. The terminal voltage and current of the cells are monitored on-line to ensure safety and recorded every 30s as input parameters for fitting process. The charging/discharging profile was repeated up to 260 cycles. Six particular cycle numbers, namely 1, 50, 100, 150, 200, and 250 were selected to investigate the cycled cells. Figure 2 shows a typical discharge curve of a lithium-ion cell. The red curve (the curve with data points on it) is computed using the ECBE battery model. Simulated Annealing12 is used to obtain an approximated global minima, and non-linear regression method, Levenberg-Marquart fitting algorithm (LMA) is employed to provide a rapid and accurate estimate of the local minima1314. Figure 3 shows the flow chart of the computation in ECBE model. With these algorithms, a good agreement can be seen between the computed and experimental discharge curves. Note that the ECBE model is valid up to 50% SoC, and the initial fast discharging portion is excluded from the model. Here SoC is computed as Q/Qm where Qm is the initial maximum charge stored in LiB and it is computed using the ECBE model11, and as evaluated using the Coulomb counting method.

Bottom Line: However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found.In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range.Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

View Article: PubMed Central - PubMed

Affiliation: 1] Nanyang Technological University, School of Electrical Electronics Engineering, Blk S2.1, 50 Nanyang Avenue, Singapore 639798, Singapore [2] TUM CREATE PTE LTD, 1 Create Way, #10-02 Create Tower, Singapore 138602, Singapore [3] Global Energy Quality And Reliability Technology (G.E.Q.A.R.T). PTE.LTD, Sims Residence, 8 Lorong, 29 Geylang #06-12, Singapore 387882, Singapore.

ABSTRACT
Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

No MeSH data available.


Related in: MedlinePlus