Limits...
Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature.

Leng F, Tan CM, Pecht M - Sci Rep (2015)

Bottom Line: However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found.In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range.Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

View Article: PubMed Central - PubMed

Affiliation: 1] Nanyang Technological University, School of Electrical Electronics Engineering, Blk S2.1, 50 Nanyang Avenue, Singapore 639798, Singapore [2] TUM CREATE PTE LTD, 1 Create Way, #10-02 Create Tower, Singapore 138602, Singapore [3] Global Energy Quality And Reliability Technology (G.E.Q.A.R.T). PTE.LTD, Sims Residence, 8 Lorong, 29 Geylang #06-12, Singapore 387882, Singapore.

ABSTRACT
Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

No MeSH data available.


Related in: MedlinePlus

Discharge capacity (Qd) measured by ETMS vs. maximum charge storage capacity (Qm) estimated by ECBE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526891&req=5

f13: Discharge capacity (Qd) measured by ETMS vs. maximum charge storage capacity (Qm) estimated by ECBE.

Mentions: On the other hand, the determination of Qm in this work is computed from the ECBE model, and hence the effect of internal voltage drop due to cell impedance will not affect our calculation. Figure 13 shows comparison of the Qm determined using the Coulomb counting method at different discharging currents versus the Qm determined using the ECBE model. It can be inferred that the trend of Qd using the Coulomb counting method is very similar to the value determined using the ECBE model when the discharging current is small, indicating that the Qm from ECBE model is close to the actual charge capacity of the LiB. The slight reduction in Qm determined from the ECBE model, as seen in Fig. 13, is due to the excessive charges reaching the negative electrode per unit time that render an inefficient storage of charges in the electrode as reported11.


Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature.

Leng F, Tan CM, Pecht M - Sci Rep (2015)

Discharge capacity (Qd) measured by ETMS vs. maximum charge storage capacity (Qm) estimated by ECBE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526891&req=5

f13: Discharge capacity (Qd) measured by ETMS vs. maximum charge storage capacity (Qm) estimated by ECBE.
Mentions: On the other hand, the determination of Qm in this work is computed from the ECBE model, and hence the effect of internal voltage drop due to cell impedance will not affect our calculation. Figure 13 shows comparison of the Qm determined using the Coulomb counting method at different discharging currents versus the Qm determined using the ECBE model. It can be inferred that the trend of Qd using the Coulomb counting method is very similar to the value determined using the ECBE model when the discharging current is small, indicating that the Qm from ECBE model is close to the actual charge capacity of the LiB. The slight reduction in Qm determined from the ECBE model, as seen in Fig. 13, is due to the excessive charges reaching the negative electrode per unit time that render an inefficient storage of charges in the electrode as reported11.

Bottom Line: However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found.In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range.Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

View Article: PubMed Central - PubMed

Affiliation: 1] Nanyang Technological University, School of Electrical Electronics Engineering, Blk S2.1, 50 Nanyang Avenue, Singapore 639798, Singapore [2] TUM CREATE PTE LTD, 1 Create Way, #10-02 Create Tower, Singapore 138602, Singapore [3] Global Energy Quality And Reliability Technology (G.E.Q.A.R.T). PTE.LTD, Sims Residence, 8 Lorong, 29 Geylang #06-12, Singapore 387882, Singapore.

ABSTRACT
Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

No MeSH data available.


Related in: MedlinePlus