Limits...
From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

Kittinger JN, Teneva LT, Koike H, Stamoulis KA, Kittinger DS, Oleson KL, Conklin E, Gomes M, Wilcox B, Friedlander AM - PLoS ONE (2015)

Bottom Line: Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats.Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432.This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management.

View Article: PubMed Central - PubMed

Affiliation: Conservation International, Betty and Gordon Moore Center for Science and Oceans, 7192 Kalaniana'ole Hwy, Honolulu, Hawaii, United States of America; Center for Ocean Solutions, Stanford University, Stanford Woods Institute for the Environment, 99 Pacific Street, Monterey, California, United States of America.

ABSTRACT
Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.

No MeSH data available.


Related in: MedlinePlus

Mapping artisanal seafood supply chains as “fish flow” from the Kīholo Bay coral reef fishery.Arrows indicate locations where seafood from Kīholo is consumed. Exact locations are indicated as place-names; some destinations were only available at coarser district (moku) levels (these are indicated with asterisks). Post-landings disposition is distinguished for kept (red), given away (blue), and sold (green) seafood. Pie charts are scaled to the total catch (kg) for each destination. The numbers in each pie are the number of distribution events recorded for each destination and represent only survey-recorded end-use, not the annual expanded catch. The district boundaries, Digital Elevation Model (DEM), and transportation lines were acquired from the Hawai‘i state GIS portal [http://planning.hawaii.gov/gis/download-gis-data/].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526684&req=5

pone.0123856.g005: Mapping artisanal seafood supply chains as “fish flow” from the Kīholo Bay coral reef fishery.Arrows indicate locations where seafood from Kīholo is consumed. Exact locations are indicated as place-names; some destinations were only available at coarser district (moku) levels (these are indicated with asterisks). Post-landings disposition is distinguished for kept (red), given away (blue), and sold (green) seafood. Pie charts are scaled to the total catch (kg) for each destination. The numbers in each pie are the number of distribution events recorded for each destination and represent only survey-recorded end-use, not the annual expanded catch. The district boundaries, Digital Elevation Model (DEM), and transportation lines were acquired from the Hawai‘i state GIS portal [http://planning.hawaii.gov/gis/download-gis-data/].

Mentions: Using data from our fish flow surveys, we mapped the geographic location, amount (by weight and number of recorded events), and disposition (end use) for seafood obtained from the Kīholo Bay coral reef fishery (Fig 5). This “fish flow” mapping revealed the geographic scale and dynamics of artisanal seafood supply chains associated with this fishery. Most seafood is consumed relatively close to Kīholo Bay, with 92% percent of the catch remaining within a 75-km radius of Kīholo Bay. Within this 75-km radius, 33% of the catch is given away, 53% is kept, and 6% is sold.


From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

Kittinger JN, Teneva LT, Koike H, Stamoulis KA, Kittinger DS, Oleson KL, Conklin E, Gomes M, Wilcox B, Friedlander AM - PLoS ONE (2015)

Mapping artisanal seafood supply chains as “fish flow” from the Kīholo Bay coral reef fishery.Arrows indicate locations where seafood from Kīholo is consumed. Exact locations are indicated as place-names; some destinations were only available at coarser district (moku) levels (these are indicated with asterisks). Post-landings disposition is distinguished for kept (red), given away (blue), and sold (green) seafood. Pie charts are scaled to the total catch (kg) for each destination. The numbers in each pie are the number of distribution events recorded for each destination and represent only survey-recorded end-use, not the annual expanded catch. The district boundaries, Digital Elevation Model (DEM), and transportation lines were acquired from the Hawai‘i state GIS portal [http://planning.hawaii.gov/gis/download-gis-data/].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526684&req=5

pone.0123856.g005: Mapping artisanal seafood supply chains as “fish flow” from the Kīholo Bay coral reef fishery.Arrows indicate locations where seafood from Kīholo is consumed. Exact locations are indicated as place-names; some destinations were only available at coarser district (moku) levels (these are indicated with asterisks). Post-landings disposition is distinguished for kept (red), given away (blue), and sold (green) seafood. Pie charts are scaled to the total catch (kg) for each destination. The numbers in each pie are the number of distribution events recorded for each destination and represent only survey-recorded end-use, not the annual expanded catch. The district boundaries, Digital Elevation Model (DEM), and transportation lines were acquired from the Hawai‘i state GIS portal [http://planning.hawaii.gov/gis/download-gis-data/].
Mentions: Using data from our fish flow surveys, we mapped the geographic location, amount (by weight and number of recorded events), and disposition (end use) for seafood obtained from the Kīholo Bay coral reef fishery (Fig 5). This “fish flow” mapping revealed the geographic scale and dynamics of artisanal seafood supply chains associated with this fishery. Most seafood is consumed relatively close to Kīholo Bay, with 92% percent of the catch remaining within a 75-km radius of Kīholo Bay. Within this 75-km radius, 33% of the catch is given away, 53% is kept, and 6% is sold.

Bottom Line: Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats.Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432.This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management.

View Article: PubMed Central - PubMed

Affiliation: Conservation International, Betty and Gordon Moore Center for Science and Oceans, 7192 Kalaniana'ole Hwy, Honolulu, Hawaii, United States of America; Center for Ocean Solutions, Stanford University, Stanford Woods Institute for the Environment, 99 Pacific Street, Monterey, California, United States of America.

ABSTRACT
Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.

No MeSH data available.


Related in: MedlinePlus