Limits...
From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

Kittinger JN, Teneva LT, Koike H, Stamoulis KA, Kittinger DS, Oleson KL, Conklin E, Gomes M, Wilcox B, Friedlander AM - PLoS ONE (2015)

Bottom Line: Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats.Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432.This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management.

View Article: PubMed Central - PubMed

Affiliation: Conservation International, Betty and Gordon Moore Center for Science and Oceans, 7192 Kalaniana'ole Hwy, Honolulu, Hawaii, United States of America; Center for Ocean Solutions, Stanford University, Stanford Woods Institute for the Environment, 99 Pacific Street, Monterey, California, United States of America.

ABSTRACT
Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.

No MeSH data available.


Related in: MedlinePlus

Coastal fisheries catch from creel surveying efforts in Kīholo Bay and the State of Hawai‘i commercial reporting block.(A) Total reconstructed annual catch (in kg) by gear type from a one-year creel survey at Kīholo Bay, Hawai‘i (red) compared to a 5-year annual mean of commercial marine landings by gear type (2009–2013, red) reported to the State of Hawai‘i’s Department of Land and Natural Resources for the entirety of reporting area 102. (B) Size of Kīholo Bay in reference to the DLNR reporting area 102 for commercial catches. The DAR reporting block is approximately 78 times larger than the reporting area for the Kīholo creel survey. Although the commercial catch and the Kīholo Bay catch represent very different spatial scales, the total annual catches are not significantly different (t-test: t = 1.5934, DF = 4, p = 0.1863). The category “other” includes gleaning for Kīholo Bay and trolling for commercial data. Line fishing includes handpole and rod-and-reel (which includes whipping, dunking and slide-baiting). Gleaning includes invertebrate collection.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526684&req=5

pone.0123856.g004: Coastal fisheries catch from creel surveying efforts in Kīholo Bay and the State of Hawai‘i commercial reporting block.(A) Total reconstructed annual catch (in kg) by gear type from a one-year creel survey at Kīholo Bay, Hawai‘i (red) compared to a 5-year annual mean of commercial marine landings by gear type (2009–2013, red) reported to the State of Hawai‘i’s Department of Land and Natural Resources for the entirety of reporting area 102. (B) Size of Kīholo Bay in reference to the DLNR reporting area 102 for commercial catches. The DAR reporting block is approximately 78 times larger than the reporting area for the Kīholo creel survey. Although the commercial catch and the Kīholo Bay catch represent very different spatial scales, the total annual catches are not significantly different (t-test: t = 1.5934, DF = 4, p = 0.1863). The category “other” includes gleaning for Kīholo Bay and trolling for commercial data. Line fishing includes handpole and rod-and-reel (which includes whipping, dunking and slide-baiting). Gleaning includes invertebrate collection.

Mentions: Total expanded catch from Kīholo Bay (7,353 ± 1547 kg yr-1), comes from an area of ca. 2.6 km2. This area is roughly 78 times smaller than the corresponding State of Hawai‘i commercial fishing reporting area (204 km2) for this region. However, the catch from Kīholo Bay is 17% higher than the 5-year average (6,218 ± 712 kg yr-1, 2009–13) of commercial catch reported to Hawai‘i’s Department of Land and Natural Resources’ (DLNR) Division of Aquatic Resources (DAR) for the entire 204 km2 commercial fishing reporting block (Table 4; S9 and S10 Tables) (Fig 4A, S10 Table). This flags that total catches (commercial and non-commercial) in coastal fisheries in the region are significantly unestimated if only traditional data reporting is considered. The reported commercial catch consists primarily of coastal pelagics (e.g., ‘ōpelu, mackerel scad, Decapterus spp., and akule, big-eye scad, Selar crumenophthalmus), thus there is very little overlap between species composition of the reported commercial catch and the generally non-commercial catch obtained from our survey (Fig 4B). Table 4 summarizes the reported commercial catch in the region for 2009–2013, and singles out the ‘opelu in fraction of total volume of catch as well as total market value. Although the commercial catch and the Kīholo Bay catch represent very different spatial scales, the total annual catches are not significantly different (t-test: t = 1.5934, DF = 4, p = 0.1863). Line fishing represents the highest percentage of the reported commercial catch (58% and 41%, respectively). Only 5% of the reported commercial catch came from spearing and no commercial catch was reported from gleaning. This differs from the catch in the Kīholo creel survey, in which spearing accounted for 18% and gleaning for 6% of the total. Nets in the reported commercial catch and the Kīholo catch accounted for 37% and 34% of the catch, respectively; there are no distinctions made between net types used commercially, while the Kīholo creel survey captures thrownets specifically.


From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

Kittinger JN, Teneva LT, Koike H, Stamoulis KA, Kittinger DS, Oleson KL, Conklin E, Gomes M, Wilcox B, Friedlander AM - PLoS ONE (2015)

Coastal fisheries catch from creel surveying efforts in Kīholo Bay and the State of Hawai‘i commercial reporting block.(A) Total reconstructed annual catch (in kg) by gear type from a one-year creel survey at Kīholo Bay, Hawai‘i (red) compared to a 5-year annual mean of commercial marine landings by gear type (2009–2013, red) reported to the State of Hawai‘i’s Department of Land and Natural Resources for the entirety of reporting area 102. (B) Size of Kīholo Bay in reference to the DLNR reporting area 102 for commercial catches. The DAR reporting block is approximately 78 times larger than the reporting area for the Kīholo creel survey. Although the commercial catch and the Kīholo Bay catch represent very different spatial scales, the total annual catches are not significantly different (t-test: t = 1.5934, DF = 4, p = 0.1863). The category “other” includes gleaning for Kīholo Bay and trolling for commercial data. Line fishing includes handpole and rod-and-reel (which includes whipping, dunking and slide-baiting). Gleaning includes invertebrate collection.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526684&req=5

pone.0123856.g004: Coastal fisheries catch from creel surveying efforts in Kīholo Bay and the State of Hawai‘i commercial reporting block.(A) Total reconstructed annual catch (in kg) by gear type from a one-year creel survey at Kīholo Bay, Hawai‘i (red) compared to a 5-year annual mean of commercial marine landings by gear type (2009–2013, red) reported to the State of Hawai‘i’s Department of Land and Natural Resources for the entirety of reporting area 102. (B) Size of Kīholo Bay in reference to the DLNR reporting area 102 for commercial catches. The DAR reporting block is approximately 78 times larger than the reporting area for the Kīholo creel survey. Although the commercial catch and the Kīholo Bay catch represent very different spatial scales, the total annual catches are not significantly different (t-test: t = 1.5934, DF = 4, p = 0.1863). The category “other” includes gleaning for Kīholo Bay and trolling for commercial data. Line fishing includes handpole and rod-and-reel (which includes whipping, dunking and slide-baiting). Gleaning includes invertebrate collection.
Mentions: Total expanded catch from Kīholo Bay (7,353 ± 1547 kg yr-1), comes from an area of ca. 2.6 km2. This area is roughly 78 times smaller than the corresponding State of Hawai‘i commercial fishing reporting area (204 km2) for this region. However, the catch from Kīholo Bay is 17% higher than the 5-year average (6,218 ± 712 kg yr-1, 2009–13) of commercial catch reported to Hawai‘i’s Department of Land and Natural Resources’ (DLNR) Division of Aquatic Resources (DAR) for the entire 204 km2 commercial fishing reporting block (Table 4; S9 and S10 Tables) (Fig 4A, S10 Table). This flags that total catches (commercial and non-commercial) in coastal fisheries in the region are significantly unestimated if only traditional data reporting is considered. The reported commercial catch consists primarily of coastal pelagics (e.g., ‘ōpelu, mackerel scad, Decapterus spp., and akule, big-eye scad, Selar crumenophthalmus), thus there is very little overlap between species composition of the reported commercial catch and the generally non-commercial catch obtained from our survey (Fig 4B). Table 4 summarizes the reported commercial catch in the region for 2009–2013, and singles out the ‘opelu in fraction of total volume of catch as well as total market value. Although the commercial catch and the Kīholo Bay catch represent very different spatial scales, the total annual catches are not significantly different (t-test: t = 1.5934, DF = 4, p = 0.1863). Line fishing represents the highest percentage of the reported commercial catch (58% and 41%, respectively). Only 5% of the reported commercial catch came from spearing and no commercial catch was reported from gleaning. This differs from the catch in the Kīholo creel survey, in which spearing accounted for 18% and gleaning for 6% of the total. Nets in the reported commercial catch and the Kīholo catch accounted for 37% and 34% of the catch, respectively; there are no distinctions made between net types used commercially, while the Kīholo creel survey captures thrownets specifically.

Bottom Line: Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats.Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432.This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management.

View Article: PubMed Central - PubMed

Affiliation: Conservation International, Betty and Gordon Moore Center for Science and Oceans, 7192 Kalaniana'ole Hwy, Honolulu, Hawaii, United States of America; Center for Ocean Solutions, Stanford University, Stanford Woods Institute for the Environment, 99 Pacific Street, Monterey, California, United States of America.

ABSTRACT
Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.

No MeSH data available.


Related in: MedlinePlus