Limits...
From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

Kittinger JN, Teneva LT, Koike H, Stamoulis KA, Kittinger DS, Oleson KL, Conklin E, Gomes M, Wilcox B, Friedlander AM - PLoS ONE (2015)

Bottom Line: Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats.Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432.This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management.

View Article: PubMed Central - PubMed

Affiliation: Conservation International, Betty and Gordon Moore Center for Science and Oceans, 7192 Kalaniana'ole Hwy, Honolulu, Hawaii, United States of America; Center for Ocean Solutions, Stanford University, Stanford Woods Institute for the Environment, 99 Pacific Street, Monterey, California, United States of America.

ABSTRACT
Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.

No MeSH data available.


Related in: MedlinePlus

Average biomass density by trophic group for resource fishes in the Northwestern Hawaiian Islands (NWHI), Kaho‘olawe Island Reserve (KIR, an unfished reserve in the main Hawaiian Islands), marine protected areas (MPA) in the West Hawaii region, areas open to fishing in West Hawai‘i (referred to as ‘open’), and in Kīholo Bay.MPAs included in this comparison are included in S1 Table. The multiple comparisons test suggest that resource fish biomass at Kīholo Bay was not significantly different from that of highly managed areas in West Hawai‘i or the sites which have little or no fishing regulations, which we refer to as ‘open’ (p = 0.07).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526684&req=5

pone.0123856.g002: Average biomass density by trophic group for resource fishes in the Northwestern Hawaiian Islands (NWHI), Kaho‘olawe Island Reserve (KIR, an unfished reserve in the main Hawaiian Islands), marine protected areas (MPA) in the West Hawaii region, areas open to fishing in West Hawai‘i (referred to as ‘open’), and in Kīholo Bay.MPAs included in this comparison are included in S1 Table. The multiple comparisons test suggest that resource fish biomass at Kīholo Bay was not significantly different from that of highly managed areas in West Hawai‘i or the sites which have little or no fishing regulations, which we refer to as ‘open’ (p = 0.07).

Mentions: The average biomass of resource fishes for all of Kīholo Bay was 26.3 g m-2 (Fig 2), which is significantly lower than marine reserve reference sites in the Northwestern Hawaiian Islands (287 g m-2) and Kaho‘olawe (107 g m-2) (Fig 2). Average biomass in Kīholo Bay was about half of that found in highly managed areas (i.e., the average of resource biomass across the following sites within in WHRFMA: Old Kona Airport, Kealakekua Bay, Lapakahi, and Waialea Bay) (51.7 g m-2) but similar to areas open to fishing in West Hawai‘i region (outside of the Kīholo FMA and the mentioned managed areas) (27.6 g m-2). The multiple comparisons test suggest that resource fish biomass at Kīholo Bay was not significantly different from that of highly managed areas in West Hawai‘i or the sites which have little or no fishing regulations, which we refer to as ‘open’ (p = 0.07, Fig 2).


From Reef to Table: Social and Ecological Factors Affecting Coral Reef Fisheries, Artisanal Seafood Supply Chains, and Seafood Security.

Kittinger JN, Teneva LT, Koike H, Stamoulis KA, Kittinger DS, Oleson KL, Conklin E, Gomes M, Wilcox B, Friedlander AM - PLoS ONE (2015)

Average biomass density by trophic group for resource fishes in the Northwestern Hawaiian Islands (NWHI), Kaho‘olawe Island Reserve (KIR, an unfished reserve in the main Hawaiian Islands), marine protected areas (MPA) in the West Hawaii region, areas open to fishing in West Hawai‘i (referred to as ‘open’), and in Kīholo Bay.MPAs included in this comparison are included in S1 Table. The multiple comparisons test suggest that resource fish biomass at Kīholo Bay was not significantly different from that of highly managed areas in West Hawai‘i or the sites which have little or no fishing regulations, which we refer to as ‘open’ (p = 0.07).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526684&req=5

pone.0123856.g002: Average biomass density by trophic group for resource fishes in the Northwestern Hawaiian Islands (NWHI), Kaho‘olawe Island Reserve (KIR, an unfished reserve in the main Hawaiian Islands), marine protected areas (MPA) in the West Hawaii region, areas open to fishing in West Hawai‘i (referred to as ‘open’), and in Kīholo Bay.MPAs included in this comparison are included in S1 Table. The multiple comparisons test suggest that resource fish biomass at Kīholo Bay was not significantly different from that of highly managed areas in West Hawai‘i or the sites which have little or no fishing regulations, which we refer to as ‘open’ (p = 0.07).
Mentions: The average biomass of resource fishes for all of Kīholo Bay was 26.3 g m-2 (Fig 2), which is significantly lower than marine reserve reference sites in the Northwestern Hawaiian Islands (287 g m-2) and Kaho‘olawe (107 g m-2) (Fig 2). Average biomass in Kīholo Bay was about half of that found in highly managed areas (i.e., the average of resource biomass across the following sites within in WHRFMA: Old Kona Airport, Kealakekua Bay, Lapakahi, and Waialea Bay) (51.7 g m-2) but similar to areas open to fishing in West Hawai‘i region (outside of the Kīholo FMA and the mentioned managed areas) (27.6 g m-2). The multiple comparisons test suggest that resource fish biomass at Kīholo Bay was not significantly different from that of highly managed areas in West Hawai‘i or the sites which have little or no fishing regulations, which we refer to as ‘open’ (p = 0.07, Fig 2).

Bottom Line: Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats.Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432.This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management.

View Article: PubMed Central - PubMed

Affiliation: Conservation International, Betty and Gordon Moore Center for Science and Oceans, 7192 Kalaniana'ole Hwy, Honolulu, Hawaii, United States of America; Center for Ocean Solutions, Stanford University, Stanford Woods Institute for the Environment, 99 Pacific Street, Monterey, California, United States of America.

ABSTRACT
Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.

No MeSH data available.


Related in: MedlinePlus