Limits...
Cerebral Correlates of Abnormal Emotion Conflict Processing in Euthymic Bipolar Patients: A Functional MRI Study.

Favre P, Polosan M, Pichat C, Bougerol T, Baciu M - PLoS ONE (2015)

Bottom Line: Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC) during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict.Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict.Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention.

View Article: PubMed Central - PubMed

Affiliation: Univ. Grenoble Alpes, LPNC, CNRS UMR 5105, Grenoble, France.

ABSTRACT

Background: Patients with bipolar disorder experience cognitive and emotional impairment that may persist even during the euthymic state of the disease. These persistent symptoms in bipolar patients (BP) may be characterized by disturbances of emotion regulation and related fronto-limbic brain circuitry. The present study aims to investigate the modulation of fronto-limbic activity and connectivity in BP by the processing of emotional conflict.

Methods: Fourteen euthymic BP and 13 matched healthy subjects (HS) underwent functional magnetic resonance imaging (fMRI) while performing a word-face emotional Stroop task designed to dissociate the monitoring/generation of emotional conflict from its resolution. Functional connectivity was determined by means of psychophysiological interaction (PPI) approach.

Results: Relative to HS, BP were slower to process incongruent stimuli, reflecting higher amount of behavioral interference during emotional Stroop. Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC) during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict. In addition, during conflict monitoring, BP showed abnormal positive connectivity between the right DLPFC and several regions of the default mode network.

Conclusions: Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict. Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention.

No MeSH data available.


Related in: MedlinePlus

Example of two successive trials presented in word-face emotional Stroop.Stimuli were either congruent or incongruent according to the valence of facial expression (i.e., joyful or fearful) and the valence of the word written across them (i.e., joie: happy or peur: fear). High conflict resolution trials consisted of incongruent stimuli preceded by incongruent stimuli; Low conflict resolution trials consisted of incongruent stimuli preceded by congruent stimuli; No conflict trials consisted of congruent stimuli preceded by either congruent (NC1) or by incongruent stimuli (NC2) (not shown in the figure). Pictures were extracted from the “Montreal Set of Facial Display of Emotion” (MSFDE) database [30].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526683&req=5

pone.0134961.g001: Example of two successive trials presented in word-face emotional Stroop.Stimuli were either congruent or incongruent according to the valence of facial expression (i.e., joyful or fearful) and the valence of the word written across them (i.e., joie: happy or peur: fear). High conflict resolution trials consisted of incongruent stimuli preceded by incongruent stimuli; Low conflict resolution trials consisted of incongruent stimuli preceded by congruent stimuli; No conflict trials consisted of congruent stimuli preceded by either congruent (NC1) or by incongruent stimuli (NC2) (not shown in the figure). Pictures were extracted from the “Montreal Set of Facial Display of Emotion” (MSFDE) database [30].

Mentions: We used a modified version of the word-face emotional Stroop task developed by Etkin et al. [16]. In the original version, Etkin et al. [16] used emotional facial stimuli from the “pictures of facial affect” database [29]. Our stimuli were different from those used by Etkin et al. as they were extracted from a more recent database, the “Montreal set of facial display of emotion” (MSFDE) [30]. In order to build the set of stimuli, twenty-five grayscale faces with different identities, expressing happy or fear emotions, were selected. It comprised 12 male and 13 female faces, with African, Asian, Caucasian or Hispanic ethnicity. The French words “joie” (happy) or “peur” (fear) written in capital letters and in red color were superimposed on the faces to create congruent and incongruent stimuli. Similarly to Etkin et al. [16], we also manipulated the order of the stimuli to create high conflict resolution (HR) and low conflict resolution (LR) trials (Fig 1). According to congruency “current vs. previous trial” we obtained four types of experimental conditions: current incongruent—previous congruent (i.e., LR); current incongruent—previous incongruent (i.e., HR); current congruent—previous congruent (no conflict 1 –NC1); current congruent—previous incongruent (no conflict 2 –NC2). Twenty-five different stimuli per condition were presented (i.e., 100 stimuli for the whole experiment). Features such as identity, gender and origin of the presented faces were randomized within conditions.


Cerebral Correlates of Abnormal Emotion Conflict Processing in Euthymic Bipolar Patients: A Functional MRI Study.

Favre P, Polosan M, Pichat C, Bougerol T, Baciu M - PLoS ONE (2015)

Example of two successive trials presented in word-face emotional Stroop.Stimuli were either congruent or incongruent according to the valence of facial expression (i.e., joyful or fearful) and the valence of the word written across them (i.e., joie: happy or peur: fear). High conflict resolution trials consisted of incongruent stimuli preceded by incongruent stimuli; Low conflict resolution trials consisted of incongruent stimuli preceded by congruent stimuli; No conflict trials consisted of congruent stimuli preceded by either congruent (NC1) or by incongruent stimuli (NC2) (not shown in the figure). Pictures were extracted from the “Montreal Set of Facial Display of Emotion” (MSFDE) database [30].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526683&req=5

pone.0134961.g001: Example of two successive trials presented in word-face emotional Stroop.Stimuli were either congruent or incongruent according to the valence of facial expression (i.e., joyful or fearful) and the valence of the word written across them (i.e., joie: happy or peur: fear). High conflict resolution trials consisted of incongruent stimuli preceded by incongruent stimuli; Low conflict resolution trials consisted of incongruent stimuli preceded by congruent stimuli; No conflict trials consisted of congruent stimuli preceded by either congruent (NC1) or by incongruent stimuli (NC2) (not shown in the figure). Pictures were extracted from the “Montreal Set of Facial Display of Emotion” (MSFDE) database [30].
Mentions: We used a modified version of the word-face emotional Stroop task developed by Etkin et al. [16]. In the original version, Etkin et al. [16] used emotional facial stimuli from the “pictures of facial affect” database [29]. Our stimuli were different from those used by Etkin et al. as they were extracted from a more recent database, the “Montreal set of facial display of emotion” (MSFDE) [30]. In order to build the set of stimuli, twenty-five grayscale faces with different identities, expressing happy or fear emotions, were selected. It comprised 12 male and 13 female faces, with African, Asian, Caucasian or Hispanic ethnicity. The French words “joie” (happy) or “peur” (fear) written in capital letters and in red color were superimposed on the faces to create congruent and incongruent stimuli. Similarly to Etkin et al. [16], we also manipulated the order of the stimuli to create high conflict resolution (HR) and low conflict resolution (LR) trials (Fig 1). According to congruency “current vs. previous trial” we obtained four types of experimental conditions: current incongruent—previous congruent (i.e., LR); current incongruent—previous incongruent (i.e., HR); current congruent—previous congruent (no conflict 1 –NC1); current congruent—previous incongruent (no conflict 2 –NC2). Twenty-five different stimuli per condition were presented (i.e., 100 stimuli for the whole experiment). Features such as identity, gender and origin of the presented faces were randomized within conditions.

Bottom Line: Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC) during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict.Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict.Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention.

View Article: PubMed Central - PubMed

Affiliation: Univ. Grenoble Alpes, LPNC, CNRS UMR 5105, Grenoble, France.

ABSTRACT

Background: Patients with bipolar disorder experience cognitive and emotional impairment that may persist even during the euthymic state of the disease. These persistent symptoms in bipolar patients (BP) may be characterized by disturbances of emotion regulation and related fronto-limbic brain circuitry. The present study aims to investigate the modulation of fronto-limbic activity and connectivity in BP by the processing of emotional conflict.

Methods: Fourteen euthymic BP and 13 matched healthy subjects (HS) underwent functional magnetic resonance imaging (fMRI) while performing a word-face emotional Stroop task designed to dissociate the monitoring/generation of emotional conflict from its resolution. Functional connectivity was determined by means of psychophysiological interaction (PPI) approach.

Results: Relative to HS, BP were slower to process incongruent stimuli, reflecting higher amount of behavioral interference during emotional Stroop. Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC) during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict. In addition, during conflict monitoring, BP showed abnormal positive connectivity between the right DLPFC and several regions of the default mode network.

Conclusions: Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict. Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention.

No MeSH data available.


Related in: MedlinePlus