Limits...
A Thermal Equilibrium Analysis of Line Contact Hydrodynamic Lubrication Considering the Influences of Reynolds Number, Load and Temperature.

Yu X, Sun Z, Huang R, Zhang Y, Huang Y - PLoS ONE (2015)

Bottom Line: These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects.The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature.Convective effect could be dominant under certain conditions.

View Article: PubMed Central - PubMed

Affiliation: Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.

ABSTRACT
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed.

No MeSH data available.


Contours of pressure, temperature and velocity distribution.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526673&req=5

pone.0134806.g002: Contours of pressure, temperature and velocity distribution.

Mentions: For example, the pressure, temperature and velocity distribution at the mid-plane(y = L/2) of oil film, with boundary conditions of U = 11.40 m/s, Tinlet = 70°C, F = 300 N, and Tb = 100°C, are shown in Fig 2. The scale in the z axis direction(thickness direction) was enlarged 20 times for display. In the contours of pressure, pressure in the diverging area is set to 0 by applying the Half Sommerfeld Boundary Condition. In the contours of temperature, the convective effect can be seen at left side of the minimum oil film area.


A Thermal Equilibrium Analysis of Line Contact Hydrodynamic Lubrication Considering the Influences of Reynolds Number, Load and Temperature.

Yu X, Sun Z, Huang R, Zhang Y, Huang Y - PLoS ONE (2015)

Contours of pressure, temperature and velocity distribution.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526673&req=5

pone.0134806.g002: Contours of pressure, temperature and velocity distribution.
Mentions: For example, the pressure, temperature and velocity distribution at the mid-plane(y = L/2) of oil film, with boundary conditions of U = 11.40 m/s, Tinlet = 70°C, F = 300 N, and Tb = 100°C, are shown in Fig 2. The scale in the z axis direction(thickness direction) was enlarged 20 times for display. In the contours of pressure, pressure in the diverging area is set to 0 by applying the Half Sommerfeld Boundary Condition. In the contours of temperature, the convective effect can be seen at left side of the minimum oil film area.

Bottom Line: These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects.The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature.Convective effect could be dominant under certain conditions.

View Article: PubMed Central - PubMed

Affiliation: Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.

ABSTRACT
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed.

No MeSH data available.