Limits...
Potential Antileukemia Effect and Structural Analyses of SRPK Inhibition by N-(2-(Piperidin-1-yl)-5-(Trifluoromethyl)Phenyl)Isonicotinamide (SRPIN340).

Siqueira RP, Barbosa Éde A, Polêto MD, Righetto GL, Seraphim TV, Salgado RL, Ferreira JG, Barros MV, de Oliveira LL, Laranjeira AB, Almeida MR, Júnior AS, Fietto JL, Kobarg J, de Oliveira EB, Teixeira RR, Borges JC, Yunes JA, Bressan GC - PLoS ONE (2015)

Bottom Line: Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis.Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex.Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.

ABSTRACT
Dysregulation of pre-mRNA splicing machinery activity has been related to the biogenesis of several diseases. The serine/arginine-rich protein kinase family (SRPKs) plays a critical role in regulating pre-mRNA splicing events through the extensive phosphorylation of splicing factors from the family of serine/arginine-rich proteins (SR proteins). Previous investigations have described the overexpression of SRPK1 and SRPK2 in leukemia and other cancer types, suggesting that they would be useful targets for developing novel antitumor strategies. Herein, we evaluated the effect of selective pharmacological SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) on the viability of lymphoid and myeloid leukemia cell lines. Along with significant cytotoxic activity, the effect of treatments in regulating the phosphorylation of the SR protein family and in altering the expression of MAP2K1, MAP2K2, VEGF and FAS genes were also assessed. Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis. Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex. These data suggest that SRPK pharmacological inhibition should be considered as an alternative therapeutic strategy for fighting leukemias. Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.

No MeSH data available.


Related in: MedlinePlus

Effect of SRPIN340 treatment on SR protein phosphorylation.Western blotting analysis after treatment with SRPIN340 (100 μM) or negative control (vehicle) for 9 or 18 h. SR protein phosphorylation was detected using mAb1H4, which recognizes phosphorylated serine-arginine epitopes common to multiple SR factors. The blot was re-probed with actin and used as an endogenous control. Graphics (below) represent the percentage of the SR proteins’ band intensity normalized to the actin signal for each HL60 and Jurkat negative control. Densitometry analysis was performed using ImageJ software. Error bars represent the means ± standard deviation from triplicate experiments. T tests, *P < 0.05, **P < 0.01.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526641&req=5

pone.0134882.g004: Effect of SRPIN340 treatment on SR protein phosphorylation.Western blotting analysis after treatment with SRPIN340 (100 μM) or negative control (vehicle) for 9 or 18 h. SR protein phosphorylation was detected using mAb1H4, which recognizes phosphorylated serine-arginine epitopes common to multiple SR factors. The blot was re-probed with actin and used as an endogenous control. Graphics (below) represent the percentage of the SR proteins’ band intensity normalized to the actin signal for each HL60 and Jurkat negative control. Densitometry analysis was performed using ImageJ software. Error bars represent the means ± standard deviation from triplicate experiments. T tests, *P < 0.05, **P < 0.01.

Mentions: The SR protein phosphorylation status was also investigated using a monoclonal antibody able to detect different phospho-SR protein epitopes [45,46]. As expected, the SR protein phospho-epitope signal decreased during treatments of both the HL60 and Jurkat lineages (Fig 4).


Potential Antileukemia Effect and Structural Analyses of SRPK Inhibition by N-(2-(Piperidin-1-yl)-5-(Trifluoromethyl)Phenyl)Isonicotinamide (SRPIN340).

Siqueira RP, Barbosa Éde A, Polêto MD, Righetto GL, Seraphim TV, Salgado RL, Ferreira JG, Barros MV, de Oliveira LL, Laranjeira AB, Almeida MR, Júnior AS, Fietto JL, Kobarg J, de Oliveira EB, Teixeira RR, Borges JC, Yunes JA, Bressan GC - PLoS ONE (2015)

Effect of SRPIN340 treatment on SR protein phosphorylation.Western blotting analysis after treatment with SRPIN340 (100 μM) or negative control (vehicle) for 9 or 18 h. SR protein phosphorylation was detected using mAb1H4, which recognizes phosphorylated serine-arginine epitopes common to multiple SR factors. The blot was re-probed with actin and used as an endogenous control. Graphics (below) represent the percentage of the SR proteins’ band intensity normalized to the actin signal for each HL60 and Jurkat negative control. Densitometry analysis was performed using ImageJ software. Error bars represent the means ± standard deviation from triplicate experiments. T tests, *P < 0.05, **P < 0.01.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526641&req=5

pone.0134882.g004: Effect of SRPIN340 treatment on SR protein phosphorylation.Western blotting analysis after treatment with SRPIN340 (100 μM) or negative control (vehicle) for 9 or 18 h. SR protein phosphorylation was detected using mAb1H4, which recognizes phosphorylated serine-arginine epitopes common to multiple SR factors. The blot was re-probed with actin and used as an endogenous control. Graphics (below) represent the percentage of the SR proteins’ band intensity normalized to the actin signal for each HL60 and Jurkat negative control. Densitometry analysis was performed using ImageJ software. Error bars represent the means ± standard deviation from triplicate experiments. T tests, *P < 0.05, **P < 0.01.
Mentions: The SR protein phosphorylation status was also investigated using a monoclonal antibody able to detect different phospho-SR protein epitopes [45,46]. As expected, the SR protein phospho-epitope signal decreased during treatments of both the HL60 and Jurkat lineages (Fig 4).

Bottom Line: Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis.Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex.Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.

ABSTRACT
Dysregulation of pre-mRNA splicing machinery activity has been related to the biogenesis of several diseases. The serine/arginine-rich protein kinase family (SRPKs) plays a critical role in regulating pre-mRNA splicing events through the extensive phosphorylation of splicing factors from the family of serine/arginine-rich proteins (SR proteins). Previous investigations have described the overexpression of SRPK1 and SRPK2 in leukemia and other cancer types, suggesting that they would be useful targets for developing novel antitumor strategies. Herein, we evaluated the effect of selective pharmacological SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) on the viability of lymphoid and myeloid leukemia cell lines. Along with significant cytotoxic activity, the effect of treatments in regulating the phosphorylation of the SR protein family and in altering the expression of MAP2K1, MAP2K2, VEGF and FAS genes were also assessed. Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis. Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex. These data suggest that SRPK pharmacological inhibition should be considered as an alternative therapeutic strategy for fighting leukemias. Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.

No MeSH data available.


Related in: MedlinePlus