Limits...
Potential Antileukemia Effect and Structural Analyses of SRPK Inhibition by N-(2-(Piperidin-1-yl)-5-(Trifluoromethyl)Phenyl)Isonicotinamide (SRPIN340).

Siqueira RP, Barbosa Éde A, Polêto MD, Righetto GL, Seraphim TV, Salgado RL, Ferreira JG, Barros MV, de Oliveira LL, Laranjeira AB, Almeida MR, Júnior AS, Fietto JL, Kobarg J, de Oliveira EB, Teixeira RR, Borges JC, Yunes JA, Bressan GC - PLoS ONE (2015)

Bottom Line: Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis.Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex.Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.

ABSTRACT
Dysregulation of pre-mRNA splicing machinery activity has been related to the biogenesis of several diseases. The serine/arginine-rich protein kinase family (SRPKs) plays a critical role in regulating pre-mRNA splicing events through the extensive phosphorylation of splicing factors from the family of serine/arginine-rich proteins (SR proteins). Previous investigations have described the overexpression of SRPK1 and SRPK2 in leukemia and other cancer types, suggesting that they would be useful targets for developing novel antitumor strategies. Herein, we evaluated the effect of selective pharmacological SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) on the viability of lymphoid and myeloid leukemia cell lines. Along with significant cytotoxic activity, the effect of treatments in regulating the phosphorylation of the SR protein family and in altering the expression of MAP2K1, MAP2K2, VEGF and FAS genes were also assessed. Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis. Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex. These data suggest that SRPK pharmacological inhibition should be considered as an alternative therapeutic strategy for fighting leukemias. Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.

No MeSH data available.


Related in: MedlinePlus

Effect of SRPIN340 treatment on MAP2K1, MAP2K2, VEGF and FAS expression in leukemia cells.cDNAs were derived from HL60, Jurkat, Molt4 and Nalm6 cells treated with SRPIN340 (100 μM) for different amounts of time (0, 9 and 18 h). One representative experiment of three is shown. (*) represent possible isoforms as previously described [19].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526641&req=5

pone.0134882.g003: Effect of SRPIN340 treatment on MAP2K1, MAP2K2, VEGF and FAS expression in leukemia cells.cDNAs were derived from HL60, Jurkat, Molt4 and Nalm6 cells treated with SRPIN340 (100 μM) for different amounts of time (0, 9 and 18 h). One representative experiment of three is shown. (*) represent possible isoforms as previously described [19].

Mentions: In the following experiments, we attempted to confirm whether SRPIN340 treatment affects cellular pathways targeted by SRPKs. As was previously reported, the expression or splicing pattern of transcripts encoding for MAP2K1, MAP2K2, VEGF and FAS are influenced by SR proteins or SRPK activity [19,32,44]. We observed that both MAP2K transcripts had their expression impaired during SRPIN340 treatment (Fig 3). These effects were more pronounced for MAP2K1, which had its expression reduced mainly at a prolonged incubation time. Additionally, we observed a reduction in the pro-angiogenic VEGF165 isoform and an increase in the pro-apoptotic FAS isoform expression during the treatments. Although we could not detect clear changes in splicing in leukemias, SRPIN340 changed the splicing of MAP2K1 in HeLa cells (S2 Fig), suggesting that different cancer lineages may respond differently to SRPK inhibition.


Potential Antileukemia Effect and Structural Analyses of SRPK Inhibition by N-(2-(Piperidin-1-yl)-5-(Trifluoromethyl)Phenyl)Isonicotinamide (SRPIN340).

Siqueira RP, Barbosa Éde A, Polêto MD, Righetto GL, Seraphim TV, Salgado RL, Ferreira JG, Barros MV, de Oliveira LL, Laranjeira AB, Almeida MR, Júnior AS, Fietto JL, Kobarg J, de Oliveira EB, Teixeira RR, Borges JC, Yunes JA, Bressan GC - PLoS ONE (2015)

Effect of SRPIN340 treatment on MAP2K1, MAP2K2, VEGF and FAS expression in leukemia cells.cDNAs were derived from HL60, Jurkat, Molt4 and Nalm6 cells treated with SRPIN340 (100 μM) for different amounts of time (0, 9 and 18 h). One representative experiment of three is shown. (*) represent possible isoforms as previously described [19].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526641&req=5

pone.0134882.g003: Effect of SRPIN340 treatment on MAP2K1, MAP2K2, VEGF and FAS expression in leukemia cells.cDNAs were derived from HL60, Jurkat, Molt4 and Nalm6 cells treated with SRPIN340 (100 μM) for different amounts of time (0, 9 and 18 h). One representative experiment of three is shown. (*) represent possible isoforms as previously described [19].
Mentions: In the following experiments, we attempted to confirm whether SRPIN340 treatment affects cellular pathways targeted by SRPKs. As was previously reported, the expression or splicing pattern of transcripts encoding for MAP2K1, MAP2K2, VEGF and FAS are influenced by SR proteins or SRPK activity [19,32,44]. We observed that both MAP2K transcripts had their expression impaired during SRPIN340 treatment (Fig 3). These effects were more pronounced for MAP2K1, which had its expression reduced mainly at a prolonged incubation time. Additionally, we observed a reduction in the pro-angiogenic VEGF165 isoform and an increase in the pro-apoptotic FAS isoform expression during the treatments. Although we could not detect clear changes in splicing in leukemias, SRPIN340 changed the splicing of MAP2K1 in HeLa cells (S2 Fig), suggesting that different cancer lineages may respond differently to SRPK inhibition.

Bottom Line: Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis.Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex.Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.

ABSTRACT
Dysregulation of pre-mRNA splicing machinery activity has been related to the biogenesis of several diseases. The serine/arginine-rich protein kinase family (SRPKs) plays a critical role in regulating pre-mRNA splicing events through the extensive phosphorylation of splicing factors from the family of serine/arginine-rich proteins (SR proteins). Previous investigations have described the overexpression of SRPK1 and SRPK2 in leukemia and other cancer types, suggesting that they would be useful targets for developing novel antitumor strategies. Herein, we evaluated the effect of selective pharmacological SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) on the viability of lymphoid and myeloid leukemia cell lines. Along with significant cytotoxic activity, the effect of treatments in regulating the phosphorylation of the SR protein family and in altering the expression of MAP2K1, MAP2K2, VEGF and FAS genes were also assessed. Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis. Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex. These data suggest that SRPK pharmacological inhibition should be considered as an alternative therapeutic strategy for fighting leukemias. Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.

No MeSH data available.


Related in: MedlinePlus