Limits...
Larynx during exercise: the unexplored bottleneck of the airways.

Røksund OD, Heimdal JH, Olofsson J, Maat RC, Halvorsen T - Eur Arch Otorhinolaryngol (2014)

Bottom Line: EIIS is usually associated with some form of laryngeal obstruction.However, EILO is poorly understood and more and better research is needed to unravel causal mechanisms.Speech therapy, psychotherapy, biofeedback, muscle training, anticholinergic aerosols have all been applied, as has laser supraglottoplasty.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatrics, Haukeland University Hospital, N-5021, Bergen, Norway, odro@helse-bergen.no.

ABSTRACT
Exercise-induced shortness of breath is not uncommon in otherwise healthy young people. Based on the presenting symptoms alone, it is challenging to distinguish exercise-induced asthma (EIA) from exercise-induced obstruction of central airways, sometimes leading to diagnostic errors and inadequate treatment. Central airway obstruction usually presents with exercise-induced inspiratory symptoms (EIIS) during ongoing exercise. EIIS tends to peak towards the end of an exercise session or immediately after its completion, contradicting symptoms of EIA typically peaking 3-15 min after the exercise has stopped. EIIS is usually associated with some form of laryngeal obstruction. Transnasal flexible laryngoscopy performed continuously throughout an incremental exercise test from rest to exhaustion or to intolerable symptoms is usually diagnostic, and also provides information that is important for further handling and treatment. Reflecting the complex anatomy and functional features of the larynx, exercise-induced laryngeal obstruction (EILO) appears to be a heterogeneous condition. Contradicting previous beliefs, recent literature suggests that laryngeal adduction in a majority of cases starts in supraglottic structures and that vocal cord adduction (VCD) most often occurs as a secondary phenomenon. However, EILO is poorly understood and more and better research is needed to unravel causal mechanisms. The evidence base for treatment of EILO is weak. Speech therapy, psychotherapy, biofeedback, muscle training, anticholinergic aerosols have all been applied, as has laser supraglottoplasty. Randomized controlled trials with well-defined and verifiable inclusion and success criteria are required to establish evidence-based treatment schemes.

No MeSH data available.


Related in: MedlinePlus

Normal larynx, as observed transnasally in a flexible laryngoscope, with the patient in the lower left corner (anonymized), epiglottis (at front) the cuneiform tubercles and the aryepiglottic folds represent supraglottic structures. The vocal cords (glottis) and the upper part of the trachea are seen below
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4526593&req=5

Fig1: Normal larynx, as observed transnasally in a flexible laryngoscope, with the patient in the lower left corner (anonymized), epiglottis (at front) the cuneiform tubercles and the aryepiglottic folds represent supraglottic structures. The vocal cords (glottis) and the upper part of the trachea are seen below

Mentions: In this article, we will use the term exercise-induced laryngeal obstruction (EILO) to describe laryngeal airflow obstruction during exercise in patients with no obvious laryngeal pathology at rest (Fig. 1). By nature, laryngeal obstruction can occur through a reduction in the size of the supraglottic space (supraglottic EILO) by anteromedial rotation of the cuneiform tubercles, medial movements of the aryepiglottic folds or retroreflective positioning or movements of the epiglottis. Laryngeal obstruction can also occur by reduction of the space between the vocal folds (glottic EILO or VCD). Considering the complex nature of the larynx, combinations of these scenarios seem plausible.Fig. 1


Larynx during exercise: the unexplored bottleneck of the airways.

Røksund OD, Heimdal JH, Olofsson J, Maat RC, Halvorsen T - Eur Arch Otorhinolaryngol (2014)

Normal larynx, as observed transnasally in a flexible laryngoscope, with the patient in the lower left corner (anonymized), epiglottis (at front) the cuneiform tubercles and the aryepiglottic folds represent supraglottic structures. The vocal cords (glottis) and the upper part of the trachea are seen below
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4526593&req=5

Fig1: Normal larynx, as observed transnasally in a flexible laryngoscope, with the patient in the lower left corner (anonymized), epiglottis (at front) the cuneiform tubercles and the aryepiglottic folds represent supraglottic structures. The vocal cords (glottis) and the upper part of the trachea are seen below
Mentions: In this article, we will use the term exercise-induced laryngeal obstruction (EILO) to describe laryngeal airflow obstruction during exercise in patients with no obvious laryngeal pathology at rest (Fig. 1). By nature, laryngeal obstruction can occur through a reduction in the size of the supraglottic space (supraglottic EILO) by anteromedial rotation of the cuneiform tubercles, medial movements of the aryepiglottic folds or retroreflective positioning or movements of the epiglottis. Laryngeal obstruction can also occur by reduction of the space between the vocal folds (glottic EILO or VCD). Considering the complex nature of the larynx, combinations of these scenarios seem plausible.Fig. 1

Bottom Line: EIIS is usually associated with some form of laryngeal obstruction.However, EILO is poorly understood and more and better research is needed to unravel causal mechanisms.Speech therapy, psychotherapy, biofeedback, muscle training, anticholinergic aerosols have all been applied, as has laser supraglottoplasty.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatrics, Haukeland University Hospital, N-5021, Bergen, Norway, odro@helse-bergen.no.

ABSTRACT
Exercise-induced shortness of breath is not uncommon in otherwise healthy young people. Based on the presenting symptoms alone, it is challenging to distinguish exercise-induced asthma (EIA) from exercise-induced obstruction of central airways, sometimes leading to diagnostic errors and inadequate treatment. Central airway obstruction usually presents with exercise-induced inspiratory symptoms (EIIS) during ongoing exercise. EIIS tends to peak towards the end of an exercise session or immediately after its completion, contradicting symptoms of EIA typically peaking 3-15 min after the exercise has stopped. EIIS is usually associated with some form of laryngeal obstruction. Transnasal flexible laryngoscopy performed continuously throughout an incremental exercise test from rest to exhaustion or to intolerable symptoms is usually diagnostic, and also provides information that is important for further handling and treatment. Reflecting the complex anatomy and functional features of the larynx, exercise-induced laryngeal obstruction (EILO) appears to be a heterogeneous condition. Contradicting previous beliefs, recent literature suggests that laryngeal adduction in a majority of cases starts in supraglottic structures and that vocal cord adduction (VCD) most often occurs as a secondary phenomenon. However, EILO is poorly understood and more and better research is needed to unravel causal mechanisms. The evidence base for treatment of EILO is weak. Speech therapy, psychotherapy, biofeedback, muscle training, anticholinergic aerosols have all been applied, as has laser supraglottoplasty. Randomized controlled trials with well-defined and verifiable inclusion and success criteria are required to establish evidence-based treatment schemes.

No MeSH data available.


Related in: MedlinePlus