Limits...
The Association between Maternal 25-Hydroxyvitamin D Concentration during Gestation and Early Childhood Cardio-metabolic Outcomes: Is There Interaction with Pre-Pregnancy BMI?

Hrudey EJ, Reynolds RM, Oostvogels AJ, Brouwer IA, Vrijkotte TG - PLoS ONE (2015)

Bottom Line: A 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.13%(99%CI:-0.3,-0.003) decrease in %BF after correction for maternal and child covariates.Thus, intrauterine exposure to both low 25OHD and maternal overweight may be associated with increased insulin resistance in offspring, while exposure to low 25OHD in utero may be associated with increased offspring %BF with no interactive effects from pBMI.Due to the limitations of this study, these results are not conclusive, however the observations of this study pose important research questions for future studies to investigate.

View Article: PubMed Central - PubMed

Affiliation: Department of Public Health, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands.

ABSTRACT
Both maternal 25-hydroxyvitamin D (25OHD) status and pre-pregnancy BMI (pBMI) may influence offspring cardio-metabolic outcomes. Lower 25OHD concentrations have been observed in women with both low and high pBMIs, but the combined influence of pBMI and 25OHD on offspring cardio-metabolic outcomes is unknown. Therefore, this study investigated the role of pBMI in the association between maternal 25OHD concentration and cardio-metabolic outcomes in 5-6 year old children. Data were obtained from the ABCD cohort study and 1882 mother-child pairs were included. The offspring outcomes investigated were systolic and diastolic blood pressure, heart rate, BMI, body fat percentage (%BF), waist-to-height ratio, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, glucose, C-peptide, and insulin resistance (HOMA2-IR). 62% of the C-peptide samples were below the detection limit and were thus imputed using survival analysis. Models were corrected for maternal and offspring covariates and tested for interaction with pBMI. Interaction with pBMI was observed in the associations with insulin resistance markers: in offspring of overweight mothers (≥25.0 kg/m2), a 10 nmol/L increase in maternal 25OHD was associated with a 0.007(99%CI:-0.01,-0.001) nmol/L decrease in C-peptide and a 0.02(99%CI:-0.03,-0.004) decrease in HOMA2-IR. When only non-imputed data were analyzed, there was a trend for interaction in the relationship but the results lost significance. Interaction with pBMI was not observed for the other outcomes. A 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.13%(99%CI:-0.3,-0.003) decrease in %BF after correction for maternal and child covariates. Thus, intrauterine exposure to both low 25OHD and maternal overweight may be associated with increased insulin resistance in offspring, while exposure to low 25OHD in utero may be associated with increased offspring %BF with no interactive effects from pBMI. Due to the limitations of this study, these results are not conclusive, however the observations of this study pose important research questions for future studies to investigate.

No MeSH data available.


Related in: MedlinePlus

The association between maternal 25-hydroxyvitamin D concentration and insulin resistance markers in young children.The association between maternal 25-hydroxyvitamin D concentration in early pregnancy and a) C-peptide and b) HOMA2-IR in 5–6 year old children with interaction with pre-pregnancy BMI presented. Adjusted for maternal age (32.4 years), maternal education (10 years), child age (5.6 years) and sedentary time (1.4 hours), and presented for Dutch ethnicity, iparous mothers, non-smokers, male children, no use of vitamin D or A/D drops in infancy and no history of breastfeeding.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526575&req=5

pone.0133313.g003: The association between maternal 25-hydroxyvitamin D concentration and insulin resistance markers in young children.The association between maternal 25-hydroxyvitamin D concentration in early pregnancy and a) C-peptide and b) HOMA2-IR in 5–6 year old children with interaction with pre-pregnancy BMI presented. Adjusted for maternal age (32.4 years), maternal education (10 years), child age (5.6 years) and sedentary time (1.4 hours), and presented for Dutch ethnicity, iparous mothers, non-smokers, male children, no use of vitamin D or A/D drops in infancy and no history of breastfeeding.

Mentions: None of the associations between maternal 25OHD and child cardio-metabolic outcomes were significantly non-linear with the exception of the association with child %BF (Table 3). Interaction with pBMI was observed for the associations with C-peptide (p = 0.02) and HOMA2-IR (p = 0.02); the models with interaction terms fit significantly better than the models without interaction terms on basis of the likelihood ratio test and AIC values. Significant inverse associations between maternal 25OHD and each of these outcomes were observed in children born to overweight women. For this group, a 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.007 nmol/L decrease in offspring C-peptide (99%CI:-0.01,-0.001) and a 0.02 decrease in offspring HOMA2-IR (99%CI:-0.03,-0.004) (Fig 3). No significant associations between maternal 25OHD and these two outcomes were found in the children of underweight or normal weight women.


The Association between Maternal 25-Hydroxyvitamin D Concentration during Gestation and Early Childhood Cardio-metabolic Outcomes: Is There Interaction with Pre-Pregnancy BMI?

Hrudey EJ, Reynolds RM, Oostvogels AJ, Brouwer IA, Vrijkotte TG - PLoS ONE (2015)

The association between maternal 25-hydroxyvitamin D concentration and insulin resistance markers in young children.The association between maternal 25-hydroxyvitamin D concentration in early pregnancy and a) C-peptide and b) HOMA2-IR in 5–6 year old children with interaction with pre-pregnancy BMI presented. Adjusted for maternal age (32.4 years), maternal education (10 years), child age (5.6 years) and sedentary time (1.4 hours), and presented for Dutch ethnicity, iparous mothers, non-smokers, male children, no use of vitamin D or A/D drops in infancy and no history of breastfeeding.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526575&req=5

pone.0133313.g003: The association between maternal 25-hydroxyvitamin D concentration and insulin resistance markers in young children.The association between maternal 25-hydroxyvitamin D concentration in early pregnancy and a) C-peptide and b) HOMA2-IR in 5–6 year old children with interaction with pre-pregnancy BMI presented. Adjusted for maternal age (32.4 years), maternal education (10 years), child age (5.6 years) and sedentary time (1.4 hours), and presented for Dutch ethnicity, iparous mothers, non-smokers, male children, no use of vitamin D or A/D drops in infancy and no history of breastfeeding.
Mentions: None of the associations between maternal 25OHD and child cardio-metabolic outcomes were significantly non-linear with the exception of the association with child %BF (Table 3). Interaction with pBMI was observed for the associations with C-peptide (p = 0.02) and HOMA2-IR (p = 0.02); the models with interaction terms fit significantly better than the models without interaction terms on basis of the likelihood ratio test and AIC values. Significant inverse associations between maternal 25OHD and each of these outcomes were observed in children born to overweight women. For this group, a 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.007 nmol/L decrease in offspring C-peptide (99%CI:-0.01,-0.001) and a 0.02 decrease in offspring HOMA2-IR (99%CI:-0.03,-0.004) (Fig 3). No significant associations between maternal 25OHD and these two outcomes were found in the children of underweight or normal weight women.

Bottom Line: A 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.13%(99%CI:-0.3,-0.003) decrease in %BF after correction for maternal and child covariates.Thus, intrauterine exposure to both low 25OHD and maternal overweight may be associated with increased insulin resistance in offspring, while exposure to low 25OHD in utero may be associated with increased offspring %BF with no interactive effects from pBMI.Due to the limitations of this study, these results are not conclusive, however the observations of this study pose important research questions for future studies to investigate.

View Article: PubMed Central - PubMed

Affiliation: Department of Public Health, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands.

ABSTRACT
Both maternal 25-hydroxyvitamin D (25OHD) status and pre-pregnancy BMI (pBMI) may influence offspring cardio-metabolic outcomes. Lower 25OHD concentrations have been observed in women with both low and high pBMIs, but the combined influence of pBMI and 25OHD on offspring cardio-metabolic outcomes is unknown. Therefore, this study investigated the role of pBMI in the association between maternal 25OHD concentration and cardio-metabolic outcomes in 5-6 year old children. Data were obtained from the ABCD cohort study and 1882 mother-child pairs were included. The offspring outcomes investigated were systolic and diastolic blood pressure, heart rate, BMI, body fat percentage (%BF), waist-to-height ratio, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, glucose, C-peptide, and insulin resistance (HOMA2-IR). 62% of the C-peptide samples were below the detection limit and were thus imputed using survival analysis. Models were corrected for maternal and offspring covariates and tested for interaction with pBMI. Interaction with pBMI was observed in the associations with insulin resistance markers: in offspring of overweight mothers (≥25.0 kg/m2), a 10 nmol/L increase in maternal 25OHD was associated with a 0.007(99%CI:-0.01,-0.001) nmol/L decrease in C-peptide and a 0.02(99%CI:-0.03,-0.004) decrease in HOMA2-IR. When only non-imputed data were analyzed, there was a trend for interaction in the relationship but the results lost significance. Interaction with pBMI was not observed for the other outcomes. A 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.13%(99%CI:-0.3,-0.003) decrease in %BF after correction for maternal and child covariates. Thus, intrauterine exposure to both low 25OHD and maternal overweight may be associated with increased insulin resistance in offspring, while exposure to low 25OHD in utero may be associated with increased offspring %BF with no interactive effects from pBMI. Due to the limitations of this study, these results are not conclusive, however the observations of this study pose important research questions for future studies to investigate.

No MeSH data available.


Related in: MedlinePlus