Limits...
The Association between Maternal 25-Hydroxyvitamin D Concentration during Gestation and Early Childhood Cardio-metabolic Outcomes: Is There Interaction with Pre-Pregnancy BMI?

Hrudey EJ, Reynolds RM, Oostvogels AJ, Brouwer IA, Vrijkotte TG - PLoS ONE (2015)

Bottom Line: A 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.13%(99%CI:-0.3,-0.003) decrease in %BF after correction for maternal and child covariates.Thus, intrauterine exposure to both low 25OHD and maternal overweight may be associated with increased insulin resistance in offspring, while exposure to low 25OHD in utero may be associated with increased offspring %BF with no interactive effects from pBMI.Due to the limitations of this study, these results are not conclusive, however the observations of this study pose important research questions for future studies to investigate.

View Article: PubMed Central - PubMed

Affiliation: Department of Public Health, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands.

ABSTRACT
Both maternal 25-hydroxyvitamin D (25OHD) status and pre-pregnancy BMI (pBMI) may influence offspring cardio-metabolic outcomes. Lower 25OHD concentrations have been observed in women with both low and high pBMIs, but the combined influence of pBMI and 25OHD on offspring cardio-metabolic outcomes is unknown. Therefore, this study investigated the role of pBMI in the association between maternal 25OHD concentration and cardio-metabolic outcomes in 5-6 year old children. Data were obtained from the ABCD cohort study and 1882 mother-child pairs were included. The offspring outcomes investigated were systolic and diastolic blood pressure, heart rate, BMI, body fat percentage (%BF), waist-to-height ratio, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, glucose, C-peptide, and insulin resistance (HOMA2-IR). 62% of the C-peptide samples were below the detection limit and were thus imputed using survival analysis. Models were corrected for maternal and offspring covariates and tested for interaction with pBMI. Interaction with pBMI was observed in the associations with insulin resistance markers: in offspring of overweight mothers (≥25.0 kg/m2), a 10 nmol/L increase in maternal 25OHD was associated with a 0.007(99%CI:-0.01,-0.001) nmol/L decrease in C-peptide and a 0.02(99%CI:-0.03,-0.004) decrease in HOMA2-IR. When only non-imputed data were analyzed, there was a trend for interaction in the relationship but the results lost significance. Interaction with pBMI was not observed for the other outcomes. A 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.13%(99%CI:-0.3,-0.003) decrease in %BF after correction for maternal and child covariates. Thus, intrauterine exposure to both low 25OHD and maternal overweight may be associated with increased insulin resistance in offspring, while exposure to low 25OHD in utero may be associated with increased offspring %BF with no interactive effects from pBMI. Due to the limitations of this study, these results are not conclusive, however the observations of this study pose important research questions for future studies to investigate.

No MeSH data available.


Related in: MedlinePlus

Flow chart of study participants.Selection of study sample from data collected for the Amsterdam Born Children and their Development cohort study. 25OHD = 25-hydroxyvitamin D, pBMI = pre-pregnancy BMI, SD = standard deviation. *Note: Exclusion criteria overlap in some participants. †Note: In the final study sample, some children completed only the physical exam and some only provided blood samples. As a result the final sample size is greater than the number of children measured in just the physical exam or just the blood testing component.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526575&req=5

pone.0133313.g001: Flow chart of study participants.Selection of study sample from data collected for the Amsterdam Born Children and their Development cohort study. 25OHD = 25-hydroxyvitamin D, pBMI = pre-pregnancy BMI, SD = standard deviation. *Note: Exclusion criteria overlap in some participants. †Note: In the final study sample, some children completed only the physical exam and some only provided blood samples. As a result the final sample size is greater than the number of children measured in just the physical exam or just the blood testing component.

Mentions: Data were derived from the Amsterdam Born Children and their Development (ABCD) study, a prospective observational cohort study that began in 2003 [21]. Between January 2003 and March 2004, all pregnant women in Amsterdam were invited to complete a questionnaire and volunteer a blood sample during their first prenatal screening. Mothers were contacted for follow-up when the child from this pregnancy reached five years of age. The participating children underwent one-day physical examinations and provided blood samples via finger prick at their schools or at local museums in Amsterdam. Maternal exclusion criteria included lack of data on 25OHD (N = 7) and pBMI (N = 1), and extreme 25OHD values (more than six standard deviations from the mean) (N = 2). Offspring exclusion criteria included twins or multiples (N = 49), non-fasting children (N = 1), congenital disease (N = 101), metabolic diseases which included cystic fibrosis, type 1 diabetes mellitus and genetic metabolic disorders such as familial hypercholesterolemia (N = 3), and lack of data on at least one outcome variable (N = 536). The final study sample consisted of 1882 mother-child pairs (Fig 1), which was greater than [4, 9, 10] or comparable [11] to the sample sizes of previous studies on this topic. Written informed consent was obtained via questionnaire from the participating pregnant women. At this time, women were also asked for written consent for future follow-up. Of those mothers who gave written informed consent for follow-up, parents and/or guardians gave consent via questionnaire for their five to six year old child to take part in the health check. The ABCD study and its informed consent procedure were approved by the medical ethics review committees of the Academic Medical Centre, Amsterdam and the VU University Medical Centre, Amsterdam, by the Registration Committee of the Municipality of Amsterdam and by the Central Committee on Research Involving Human Subjects in the Netherlands.


The Association between Maternal 25-Hydroxyvitamin D Concentration during Gestation and Early Childhood Cardio-metabolic Outcomes: Is There Interaction with Pre-Pregnancy BMI?

Hrudey EJ, Reynolds RM, Oostvogels AJ, Brouwer IA, Vrijkotte TG - PLoS ONE (2015)

Flow chart of study participants.Selection of study sample from data collected for the Amsterdam Born Children and their Development cohort study. 25OHD = 25-hydroxyvitamin D, pBMI = pre-pregnancy BMI, SD = standard deviation. *Note: Exclusion criteria overlap in some participants. †Note: In the final study sample, some children completed only the physical exam and some only provided blood samples. As a result the final sample size is greater than the number of children measured in just the physical exam or just the blood testing component.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526575&req=5

pone.0133313.g001: Flow chart of study participants.Selection of study sample from data collected for the Amsterdam Born Children and their Development cohort study. 25OHD = 25-hydroxyvitamin D, pBMI = pre-pregnancy BMI, SD = standard deviation. *Note: Exclusion criteria overlap in some participants. †Note: In the final study sample, some children completed only the physical exam and some only provided blood samples. As a result the final sample size is greater than the number of children measured in just the physical exam or just the blood testing component.
Mentions: Data were derived from the Amsterdam Born Children and their Development (ABCD) study, a prospective observational cohort study that began in 2003 [21]. Between January 2003 and March 2004, all pregnant women in Amsterdam were invited to complete a questionnaire and volunteer a blood sample during their first prenatal screening. Mothers were contacted for follow-up when the child from this pregnancy reached five years of age. The participating children underwent one-day physical examinations and provided blood samples via finger prick at their schools or at local museums in Amsterdam. Maternal exclusion criteria included lack of data on 25OHD (N = 7) and pBMI (N = 1), and extreme 25OHD values (more than six standard deviations from the mean) (N = 2). Offspring exclusion criteria included twins or multiples (N = 49), non-fasting children (N = 1), congenital disease (N = 101), metabolic diseases which included cystic fibrosis, type 1 diabetes mellitus and genetic metabolic disorders such as familial hypercholesterolemia (N = 3), and lack of data on at least one outcome variable (N = 536). The final study sample consisted of 1882 mother-child pairs (Fig 1), which was greater than [4, 9, 10] or comparable [11] to the sample sizes of previous studies on this topic. Written informed consent was obtained via questionnaire from the participating pregnant women. At this time, women were also asked for written consent for future follow-up. Of those mothers who gave written informed consent for follow-up, parents and/or guardians gave consent via questionnaire for their five to six year old child to take part in the health check. The ABCD study and its informed consent procedure were approved by the medical ethics review committees of the Academic Medical Centre, Amsterdam and the VU University Medical Centre, Amsterdam, by the Registration Committee of the Municipality of Amsterdam and by the Central Committee on Research Involving Human Subjects in the Netherlands.

Bottom Line: A 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.13%(99%CI:-0.3,-0.003) decrease in %BF after correction for maternal and child covariates.Thus, intrauterine exposure to both low 25OHD and maternal overweight may be associated with increased insulin resistance in offspring, while exposure to low 25OHD in utero may be associated with increased offspring %BF with no interactive effects from pBMI.Due to the limitations of this study, these results are not conclusive, however the observations of this study pose important research questions for future studies to investigate.

View Article: PubMed Central - PubMed

Affiliation: Department of Public Health, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands.

ABSTRACT
Both maternal 25-hydroxyvitamin D (25OHD) status and pre-pregnancy BMI (pBMI) may influence offspring cardio-metabolic outcomes. Lower 25OHD concentrations have been observed in women with both low and high pBMIs, but the combined influence of pBMI and 25OHD on offspring cardio-metabolic outcomes is unknown. Therefore, this study investigated the role of pBMI in the association between maternal 25OHD concentration and cardio-metabolic outcomes in 5-6 year old children. Data were obtained from the ABCD cohort study and 1882 mother-child pairs were included. The offspring outcomes investigated were systolic and diastolic blood pressure, heart rate, BMI, body fat percentage (%BF), waist-to-height ratio, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, glucose, C-peptide, and insulin resistance (HOMA2-IR). 62% of the C-peptide samples were below the detection limit and were thus imputed using survival analysis. Models were corrected for maternal and offspring covariates and tested for interaction with pBMI. Interaction with pBMI was observed in the associations with insulin resistance markers: in offspring of overweight mothers (≥25.0 kg/m2), a 10 nmol/L increase in maternal 25OHD was associated with a 0.007(99%CI:-0.01,-0.001) nmol/L decrease in C-peptide and a 0.02(99%CI:-0.03,-0.004) decrease in HOMA2-IR. When only non-imputed data were analyzed, there was a trend for interaction in the relationship but the results lost significance. Interaction with pBMI was not observed for the other outcomes. A 10 nmol/L increase in maternal 25OHD was significantly associated with a 0.13%(99%CI:-0.3,-0.003) decrease in %BF after correction for maternal and child covariates. Thus, intrauterine exposure to both low 25OHD and maternal overweight may be associated with increased insulin resistance in offspring, while exposure to low 25OHD in utero may be associated with increased offspring %BF with no interactive effects from pBMI. Due to the limitations of this study, these results are not conclusive, however the observations of this study pose important research questions for future studies to investigate.

No MeSH data available.


Related in: MedlinePlus