Limits...
Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells.

Stein DC, LeVan A, Hardy B, Wang LC, Zimmerman L, Song W - PLoS ONE (2015)

Bottom Line: When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer.Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites.Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America.

ABSTRACT
Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.

No MeSH data available.


Related in: MedlinePlus

Opa expression has no impact on the permeability of polarized epithelial monolayer infected with GC.Polarized T84 cells were apically incubated with GC for 6 h in the presence of 1 μg/ml of FITC or HRP in the apical medium. The fluorescence intensity of FITC in the basolateral media was measured at 490 nm using a fluorimeter. The enzymatic activity of HRP was measured using a color changing substrate. Shown are the average percent of FITC and HRP leaked into the basolateral media from three independent experiments.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526573&req=5

pone.0134342.g005: Opa expression has no impact on the permeability of polarized epithelial monolayer infected with GC.Polarized T84 cells were apically incubated with GC for 6 h in the presence of 1 μg/ml of FITC or HRP in the apical medium. The fluorescence intensity of FITC in the basolateral media was measured at 490 nm using a fluorimeter. The enzymatic activity of HRP was measured using a color changing substrate. Shown are the average percent of FITC and HRP leaked into the basolateral media from three independent experiments.

Mentions: We have previously shown that Opa-expressing MS11 can induce the disassembly of the apical junction. The junction disassembly leads to a reduction in the barrier function of the apical junction against the lateral diffusion between the apical and basolateral membrane, but not a significant increase in the junctional permeability [32]. To determine whether MS11∆Opa GC transmigrate across polarized epithelial cells by making the epithelium paracellulary leaky, we examined the effect of MS11Opa+ and MS11∆Opa inoculation on the permeability of the epithelial monolayer to HRP and FITC. After apical incubation with HRP or FITC for 6 h in the presence or absence of GC, there was no significant increase in the amount of HRP or FITC leaking from the apical to basolateral chamber compared to the control cells without GC inoculation (Fig 5). This result suggests that the relatively high transmigration efficiency of MS11∆Opa is not due to an enhanced ability of MS11∆Opa to increase the permeability of the polarized epithelial monolayer to molecules equal or bigger than FITC and HRP.


Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells.

Stein DC, LeVan A, Hardy B, Wang LC, Zimmerman L, Song W - PLoS ONE (2015)

Opa expression has no impact on the permeability of polarized epithelial monolayer infected with GC.Polarized T84 cells were apically incubated with GC for 6 h in the presence of 1 μg/ml of FITC or HRP in the apical medium. The fluorescence intensity of FITC in the basolateral media was measured at 490 nm using a fluorimeter. The enzymatic activity of HRP was measured using a color changing substrate. Shown are the average percent of FITC and HRP leaked into the basolateral media from three independent experiments.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526573&req=5

pone.0134342.g005: Opa expression has no impact on the permeability of polarized epithelial monolayer infected with GC.Polarized T84 cells were apically incubated with GC for 6 h in the presence of 1 μg/ml of FITC or HRP in the apical medium. The fluorescence intensity of FITC in the basolateral media was measured at 490 nm using a fluorimeter. The enzymatic activity of HRP was measured using a color changing substrate. Shown are the average percent of FITC and HRP leaked into the basolateral media from three independent experiments.
Mentions: We have previously shown that Opa-expressing MS11 can induce the disassembly of the apical junction. The junction disassembly leads to a reduction in the barrier function of the apical junction against the lateral diffusion between the apical and basolateral membrane, but not a significant increase in the junctional permeability [32]. To determine whether MS11∆Opa GC transmigrate across polarized epithelial cells by making the epithelium paracellulary leaky, we examined the effect of MS11Opa+ and MS11∆Opa inoculation on the permeability of the epithelial monolayer to HRP and FITC. After apical incubation with HRP or FITC for 6 h in the presence or absence of GC, there was no significant increase in the amount of HRP or FITC leaking from the apical to basolateral chamber compared to the control cells without GC inoculation (Fig 5). This result suggests that the relatively high transmigration efficiency of MS11∆Opa is not due to an enhanced ability of MS11∆Opa to increase the permeability of the polarized epithelial monolayer to molecules equal or bigger than FITC and HRP.

Bottom Line: When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer.Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites.Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America.

ABSTRACT
Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.

No MeSH data available.


Related in: MedlinePlus