Limits...
A Genomic Approach to Unravel Host-Pathogen Interaction in Chelonians: The Example of Testudinid Herpesvirus 3.

Origgi FC, Tecilla M, Pilo P, Aloisio F, Otten P, Aguilar-Bultet L, Sattler U, Roccabianca P, Romero CH, Bloom DC, Jacobson ER - PLoS ONE (2015)

Bottom Line: Consistently, the phylogenetic analysis positions TeHV3 among the Alphaherpesvirinae, closely associated with Chelonid herpesvirus 5, a Scutavirus.To exemplify the potential benefits of the novel genomic information provided by this first whole genome analysis, we selected the glycoprotein B (gB) gene, for detailed comparison among different TeHV3 isolates.Viral isolation, TeHV identification, phylogenetic analysis and pathological characterization of the associated lesions, were performed.

View Article: PubMed Central - PubMed

Affiliation: Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland.

ABSTRACT
We report the first de novo sequence assembly and analysis of the genome of Testudinid herpesvirus 3 (TeHV3), one of the most pathogenic chelonian herpesviruses. The genome of TeHV3 is at least 150,080 nucleotides long, is arranged in a type D configuration and comprises at least 102 open reading frames extensively co-linear with those of Human herpesvirus 1. Consistently, the phylogenetic analysis positions TeHV3 among the Alphaherpesvirinae, closely associated with Chelonid herpesvirus 5, a Scutavirus. To date, there has been limited genetic characterization of TeHVs and a resolution beyond the genotype was not feasible because of the lack of informative DNA sequences. To exemplify the potential benefits of the novel genomic information provided by this first whole genome analysis, we selected the glycoprotein B (gB) gene, for detailed comparison among different TeHV3 isolates. The rationale for selecting gB is that it encodes for a well-conserved protein among herpesviruses but is coupled with a relevant antigenicity and is consequently prone to accumulate single nucleotide polymorphisms. These features were considered critical for an ideal phylogenetic marker to investigate the potential existence of distinct TeHV3 genogroups and their associated pathology. Fifteen captive tortoises presumptively diagnosed to be infected with TeHVs or carrying compatible lesions on the basis of either the presence of intranuclear inclusions (presumptively infected) and/or diphtheronecrotic stomatitis-glossitis or pneumonia (compatible lesions) were selected for the study. Viral isolation, TeHV identification, phylogenetic analysis and pathological characterization of the associated lesions, were performed. Our results revealed 1) the existence of at least two distinct TeHV3 genogroups apparently associated with different pathologies in tortoises and 2) the first evidence for a putative homologous recombination event having occurred in a chelonian herpesvirus. This novel information is not only fundamental for the genetic characterization of this virus but is also critical to lay the groundwork for an improved understanding of host-pathogen interactions in chelonians and contribute to tortoise conservation.

No MeSH data available.


Related in: MedlinePlus

Glycoprotein B (full sequence)/based phylogenetic analysis.Maximum likelihood tree inferred from the full-length aa sequence of the gB of 2 strains of the TeHV3 and of 35 additional herpesviruses. Bootstrap values from 500 iterations are shown. This analysis shows unambiguous clustering of the TeHV3 main genogroups (A and B) within the Alphaherpesvirinae subfamily in close association with ChHV5 member of the novel identified genus of the Scutavirus. (Genbank accession numbers: Chelonian HV5-ChHV5-AAU93326, Chelonian HV6-ChHV5-AAM95776, Bovine HV5-BoHV5-YP_003662497.1, Bovine HV1-BoHV1-NP_045331.1, Suid HV1-SuHV1-YP_068330.1, Feline HV1-FeHV1-YP_003331552.2, Equine HV4-EqHV4-NP_045250.1, Equine HV9-EqHV9-YP_002333514.1, Equine HV1-EqHV1-YP_053078.1, Cercopithecine HV9-CeHV9-NP_077446.1, Human HV3-HHV3-NP_040154.2, Saimirine HV1-SaHV1-YP_003933812.1, Cercopithecine HV2-CeHV2-YP_164470.1, Macacine HV1-McHV1-NP_851887.1, Human HV1-HHV1-NP_044629.1, Human HV2-HHV2-NP_044497.1, Meleagrid HV1-MeHV1-NP_073321.1, Gallid HV3-GaHV3-NP_066859.1, Gallid HV2-GaHV2-YP_001033956.1, Gallid HV1-GaHV1-YP_182356.1, Testudinid HV3-TeHV3-CH6883/03-KP979730, Testudinid HV3-TeHV3-US1976/98-KP979717; Cercopithecine HV5-CeHV5-YP_004936031.1, Macacine HV3-McHV3-YP_068182.1, Human HV5-HHV5-YP_081514.1, Saimirine HV3-SaHV3-YP_004940228.1, Human HV7-HHV7-YP_073779.1, Human HV6A-HHV6A-NP_042932.1, Human HV6B-HHV6B-NP_050220.1, Human HV4-HHV4-YP_001129508.1, Macacine HV4-McHV4-YP_068009.1, Equine HV2-EqHV2-NP_042604.1, Ovine HV2-OvHV2-YP_438135.1, Saimirine HV2-SaHV2-NP_040210.1, Bovine HV4-BoHV4-NP_076500.1, Human HV8-HHV8-YP_00119354.1, Macacine HV5-McHV5-NP_570749.1).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526542&req=5

pone.0134897.g011: Glycoprotein B (full sequence)/based phylogenetic analysis.Maximum likelihood tree inferred from the full-length aa sequence of the gB of 2 strains of the TeHV3 and of 35 additional herpesviruses. Bootstrap values from 500 iterations are shown. This analysis shows unambiguous clustering of the TeHV3 main genogroups (A and B) within the Alphaherpesvirinae subfamily in close association with ChHV5 member of the novel identified genus of the Scutavirus. (Genbank accession numbers: Chelonian HV5-ChHV5-AAU93326, Chelonian HV6-ChHV5-AAM95776, Bovine HV5-BoHV5-YP_003662497.1, Bovine HV1-BoHV1-NP_045331.1, Suid HV1-SuHV1-YP_068330.1, Feline HV1-FeHV1-YP_003331552.2, Equine HV4-EqHV4-NP_045250.1, Equine HV9-EqHV9-YP_002333514.1, Equine HV1-EqHV1-YP_053078.1, Cercopithecine HV9-CeHV9-NP_077446.1, Human HV3-HHV3-NP_040154.2, Saimirine HV1-SaHV1-YP_003933812.1, Cercopithecine HV2-CeHV2-YP_164470.1, Macacine HV1-McHV1-NP_851887.1, Human HV1-HHV1-NP_044629.1, Human HV2-HHV2-NP_044497.1, Meleagrid HV1-MeHV1-NP_073321.1, Gallid HV3-GaHV3-NP_066859.1, Gallid HV2-GaHV2-YP_001033956.1, Gallid HV1-GaHV1-YP_182356.1, Testudinid HV3-TeHV3-CH6883/03-KP979730, Testudinid HV3-TeHV3-US1976/98-KP979717; Cercopithecine HV5-CeHV5-YP_004936031.1, Macacine HV3-McHV3-YP_068182.1, Human HV5-HHV5-YP_081514.1, Saimirine HV3-SaHV3-YP_004940228.1, Human HV7-HHV7-YP_073779.1, Human HV6A-HHV6A-NP_042932.1, Human HV6B-HHV6B-NP_050220.1, Human HV4-HHV4-YP_001129508.1, Macacine HV4-McHV4-YP_068009.1, Equine HV2-EqHV2-NP_042604.1, Ovine HV2-OvHV2-YP_438135.1, Saimirine HV2-SaHV2-NP_040210.1, Bovine HV4-BoHV4-NP_076500.1, Human HV8-HHV8-YP_00119354.1, Macacine HV5-McHV5-NP_570749.1).

Mentions: Finally, when the full gB aa sequence was compared with the homologous sequence of other well-characterized herpesviruses, TeHV3 clustered unambiguously among the Alphaherpesvirinae in close association with ChHV5, the only recognized herpesviral species of the genus Scutavirus (Type 3 analysis) (Fig 11).


A Genomic Approach to Unravel Host-Pathogen Interaction in Chelonians: The Example of Testudinid Herpesvirus 3.

Origgi FC, Tecilla M, Pilo P, Aloisio F, Otten P, Aguilar-Bultet L, Sattler U, Roccabianca P, Romero CH, Bloom DC, Jacobson ER - PLoS ONE (2015)

Glycoprotein B (full sequence)/based phylogenetic analysis.Maximum likelihood tree inferred from the full-length aa sequence of the gB of 2 strains of the TeHV3 and of 35 additional herpesviruses. Bootstrap values from 500 iterations are shown. This analysis shows unambiguous clustering of the TeHV3 main genogroups (A and B) within the Alphaherpesvirinae subfamily in close association with ChHV5 member of the novel identified genus of the Scutavirus. (Genbank accession numbers: Chelonian HV5-ChHV5-AAU93326, Chelonian HV6-ChHV5-AAM95776, Bovine HV5-BoHV5-YP_003662497.1, Bovine HV1-BoHV1-NP_045331.1, Suid HV1-SuHV1-YP_068330.1, Feline HV1-FeHV1-YP_003331552.2, Equine HV4-EqHV4-NP_045250.1, Equine HV9-EqHV9-YP_002333514.1, Equine HV1-EqHV1-YP_053078.1, Cercopithecine HV9-CeHV9-NP_077446.1, Human HV3-HHV3-NP_040154.2, Saimirine HV1-SaHV1-YP_003933812.1, Cercopithecine HV2-CeHV2-YP_164470.1, Macacine HV1-McHV1-NP_851887.1, Human HV1-HHV1-NP_044629.1, Human HV2-HHV2-NP_044497.1, Meleagrid HV1-MeHV1-NP_073321.1, Gallid HV3-GaHV3-NP_066859.1, Gallid HV2-GaHV2-YP_001033956.1, Gallid HV1-GaHV1-YP_182356.1, Testudinid HV3-TeHV3-CH6883/03-KP979730, Testudinid HV3-TeHV3-US1976/98-KP979717; Cercopithecine HV5-CeHV5-YP_004936031.1, Macacine HV3-McHV3-YP_068182.1, Human HV5-HHV5-YP_081514.1, Saimirine HV3-SaHV3-YP_004940228.1, Human HV7-HHV7-YP_073779.1, Human HV6A-HHV6A-NP_042932.1, Human HV6B-HHV6B-NP_050220.1, Human HV4-HHV4-YP_001129508.1, Macacine HV4-McHV4-YP_068009.1, Equine HV2-EqHV2-NP_042604.1, Ovine HV2-OvHV2-YP_438135.1, Saimirine HV2-SaHV2-NP_040210.1, Bovine HV4-BoHV4-NP_076500.1, Human HV8-HHV8-YP_00119354.1, Macacine HV5-McHV5-NP_570749.1).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526542&req=5

pone.0134897.g011: Glycoprotein B (full sequence)/based phylogenetic analysis.Maximum likelihood tree inferred from the full-length aa sequence of the gB of 2 strains of the TeHV3 and of 35 additional herpesviruses. Bootstrap values from 500 iterations are shown. This analysis shows unambiguous clustering of the TeHV3 main genogroups (A and B) within the Alphaherpesvirinae subfamily in close association with ChHV5 member of the novel identified genus of the Scutavirus. (Genbank accession numbers: Chelonian HV5-ChHV5-AAU93326, Chelonian HV6-ChHV5-AAM95776, Bovine HV5-BoHV5-YP_003662497.1, Bovine HV1-BoHV1-NP_045331.1, Suid HV1-SuHV1-YP_068330.1, Feline HV1-FeHV1-YP_003331552.2, Equine HV4-EqHV4-NP_045250.1, Equine HV9-EqHV9-YP_002333514.1, Equine HV1-EqHV1-YP_053078.1, Cercopithecine HV9-CeHV9-NP_077446.1, Human HV3-HHV3-NP_040154.2, Saimirine HV1-SaHV1-YP_003933812.1, Cercopithecine HV2-CeHV2-YP_164470.1, Macacine HV1-McHV1-NP_851887.1, Human HV1-HHV1-NP_044629.1, Human HV2-HHV2-NP_044497.1, Meleagrid HV1-MeHV1-NP_073321.1, Gallid HV3-GaHV3-NP_066859.1, Gallid HV2-GaHV2-YP_001033956.1, Gallid HV1-GaHV1-YP_182356.1, Testudinid HV3-TeHV3-CH6883/03-KP979730, Testudinid HV3-TeHV3-US1976/98-KP979717; Cercopithecine HV5-CeHV5-YP_004936031.1, Macacine HV3-McHV3-YP_068182.1, Human HV5-HHV5-YP_081514.1, Saimirine HV3-SaHV3-YP_004940228.1, Human HV7-HHV7-YP_073779.1, Human HV6A-HHV6A-NP_042932.1, Human HV6B-HHV6B-NP_050220.1, Human HV4-HHV4-YP_001129508.1, Macacine HV4-McHV4-YP_068009.1, Equine HV2-EqHV2-NP_042604.1, Ovine HV2-OvHV2-YP_438135.1, Saimirine HV2-SaHV2-NP_040210.1, Bovine HV4-BoHV4-NP_076500.1, Human HV8-HHV8-YP_00119354.1, Macacine HV5-McHV5-NP_570749.1).
Mentions: Finally, when the full gB aa sequence was compared with the homologous sequence of other well-characterized herpesviruses, TeHV3 clustered unambiguously among the Alphaherpesvirinae in close association with ChHV5, the only recognized herpesviral species of the genus Scutavirus (Type 3 analysis) (Fig 11).

Bottom Line: Consistently, the phylogenetic analysis positions TeHV3 among the Alphaherpesvirinae, closely associated with Chelonid herpesvirus 5, a Scutavirus.To exemplify the potential benefits of the novel genomic information provided by this first whole genome analysis, we selected the glycoprotein B (gB) gene, for detailed comparison among different TeHV3 isolates.Viral isolation, TeHV identification, phylogenetic analysis and pathological characterization of the associated lesions, were performed.

View Article: PubMed Central - PubMed

Affiliation: Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland.

ABSTRACT
We report the first de novo sequence assembly and analysis of the genome of Testudinid herpesvirus 3 (TeHV3), one of the most pathogenic chelonian herpesviruses. The genome of TeHV3 is at least 150,080 nucleotides long, is arranged in a type D configuration and comprises at least 102 open reading frames extensively co-linear with those of Human herpesvirus 1. Consistently, the phylogenetic analysis positions TeHV3 among the Alphaherpesvirinae, closely associated with Chelonid herpesvirus 5, a Scutavirus. To date, there has been limited genetic characterization of TeHVs and a resolution beyond the genotype was not feasible because of the lack of informative DNA sequences. To exemplify the potential benefits of the novel genomic information provided by this first whole genome analysis, we selected the glycoprotein B (gB) gene, for detailed comparison among different TeHV3 isolates. The rationale for selecting gB is that it encodes for a well-conserved protein among herpesviruses but is coupled with a relevant antigenicity and is consequently prone to accumulate single nucleotide polymorphisms. These features were considered critical for an ideal phylogenetic marker to investigate the potential existence of distinct TeHV3 genogroups and their associated pathology. Fifteen captive tortoises presumptively diagnosed to be infected with TeHVs or carrying compatible lesions on the basis of either the presence of intranuclear inclusions (presumptively infected) and/or diphtheronecrotic stomatitis-glossitis or pneumonia (compatible lesions) were selected for the study. Viral isolation, TeHV identification, phylogenetic analysis and pathological characterization of the associated lesions, were performed. Our results revealed 1) the existence of at least two distinct TeHV3 genogroups apparently associated with different pathologies in tortoises and 2) the first evidence for a putative homologous recombination event having occurred in a chelonian herpesvirus. This novel information is not only fundamental for the genetic characterization of this virus but is also critical to lay the groundwork for an improved understanding of host-pathogen interactions in chelonians and contribute to tortoise conservation.

No MeSH data available.


Related in: MedlinePlus