Limits...
Managing Conflict between Bats and Humans: The Response of Soprano Pipistrelles (Pipistrellus pygmaeus) to Exclusion from Roosts in Houses.

Stone E, Zeale MR, Newson SE, Browne WJ, Harris S, Jones G - PLoS ONE (2015)

Bottom Line: We found no difference in roosting behaviour before and after exclusion.We also found no change in foraging behaviour.Population modelling suggested that any reduction in survival following exclusion could have a negative impact on population growth, whereas a reduction in productivity would have less effect.

View Article: PubMed Central - PubMed

Affiliation: School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom.

ABSTRACT
Conflict can arise when bats roost in human dwellings and householders are affected adversely by their presence. In the United Kingdom, the exclusion of bats from roosts can be licensed under exceptional circumstances to alleviate conflict, but the fate of excluded bats and the impact on their survival and reproduction is not well understood. Using radio-tracking, we investigated the effects of exclusion on the soprano pipistrelle Pipistrellus pygmaeus, a species that commonly roosts in buildings in Europe. Exclusions were performed under licence at five roosts in England in spring, when females were in the early stages of pregnancy. Following exclusion, all bats found alternative roosts and colonies congregated in nearby known roosts that had been used by radio-tagged bats prior to exclusion. We found no difference in roosting behaviour before and after exclusion. Both the frequency of roost switching and the type of roosts used by bats remained unchanged. We also found no change in foraging behaviour. Bats foraged in the same areas, travelled similar distances to reach foraging areas and showed similar patterns of habitat selection before and after exclusion. Population modelling suggested that any reduction in survival following exclusion could have a negative impact on population growth, whereas a reduction in productivity would have less effect. While the number of soprano pipistrelle exclusions currently licensed each year is likely to have little effect on local populations, the cumulative impacts of licensing the destruction of large numbers of roosts may be of concern.

No MeSH data available.


Spatial organisation of Pipistrellus pygmaeus.Spatial data collected from female Pipistrellus pygmaeus at (a) Crakemarsh (n = 25 bats), (b) Bentham (n = 23 bats), (c) Shackleford (n = 20 bats) and (d) Studland (n = 25 bats). Locations of the original colony roost before exclusion (red point), the new colony roost after exclusion (blue point), and alternative roosts (black points) are shown, together with the colony home ranges (100% minimum convex polygon). 90% cluster core foraging areas are shown for bats with ≥30 radio-tracking fixes for both control (solid grey polygons) and exclusion (hollow black polygons) periods (n = four bats at Bentham, 14 bats at Crakemarsh, seven bats at Shackleford and 15 bats at Studland).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526527&req=5

pone.0131825.g001: Spatial organisation of Pipistrellus pygmaeus.Spatial data collected from female Pipistrellus pygmaeus at (a) Crakemarsh (n = 25 bats), (b) Bentham (n = 23 bats), (c) Shackleford (n = 20 bats) and (d) Studland (n = 25 bats). Locations of the original colony roost before exclusion (red point), the new colony roost after exclusion (blue point), and alternative roosts (black points) are shown, together with the colony home ranges (100% minimum convex polygon). 90% cluster core foraging areas are shown for bats with ≥30 radio-tracking fixes for both control (solid grey polygons) and exclusion (hollow black polygons) periods (n = four bats at Bentham, 14 bats at Crakemarsh, seven bats at Shackleford and 15 bats at Studland).

Mentions: Across the five study sites, we recorded over 700 day roost fixes from 114 bats and identified 89 alternative roosts (Table 3). Most were in domestic dwellings, ranging from small bungalows to large manor houses. Roosts in uninhabited buildings, such as garages or sheds, industrial warehouses and trees were used to a lesser extent (Table 4). Roosts were typically within a few hundred metres of foraging areas but up to 5 km from the original colony roost (Fig 1). Of the 89 alternative roosts, we considered that 41 (46%) were suitable alternative colony roosts. Of 114 radio-tagged bats, 110 used one or more alternative roosts during the 4 to 7 day control period. Forty-one bats were not recorded in the original colony roost after being caught there i.e. they roosted exclusively in alternative roosts. We performed emergence counts at 24 alternative roosts during control periods; most (n = 21) contained relatively few bats (mean 7.6 ± 8.6, range 1–33 bats) compared to the original colony roost from which bats were excluded (190.0 ± 65.2, range 150–300 bats). At Bentham, Shackleford and Studland we identified one alternative roost during the control period that contained a large number (>100) of bats, and tagged bats frequently moved between these roosts and the original colony roosts, indicating that at each of these sites the colony was split between two significant roosts prior to exclusion.


Managing Conflict between Bats and Humans: The Response of Soprano Pipistrelles (Pipistrellus pygmaeus) to Exclusion from Roosts in Houses.

Stone E, Zeale MR, Newson SE, Browne WJ, Harris S, Jones G - PLoS ONE (2015)

Spatial organisation of Pipistrellus pygmaeus.Spatial data collected from female Pipistrellus pygmaeus at (a) Crakemarsh (n = 25 bats), (b) Bentham (n = 23 bats), (c) Shackleford (n = 20 bats) and (d) Studland (n = 25 bats). Locations of the original colony roost before exclusion (red point), the new colony roost after exclusion (blue point), and alternative roosts (black points) are shown, together with the colony home ranges (100% minimum convex polygon). 90% cluster core foraging areas are shown for bats with ≥30 radio-tracking fixes for both control (solid grey polygons) and exclusion (hollow black polygons) periods (n = four bats at Bentham, 14 bats at Crakemarsh, seven bats at Shackleford and 15 bats at Studland).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526527&req=5

pone.0131825.g001: Spatial organisation of Pipistrellus pygmaeus.Spatial data collected from female Pipistrellus pygmaeus at (a) Crakemarsh (n = 25 bats), (b) Bentham (n = 23 bats), (c) Shackleford (n = 20 bats) and (d) Studland (n = 25 bats). Locations of the original colony roost before exclusion (red point), the new colony roost after exclusion (blue point), and alternative roosts (black points) are shown, together with the colony home ranges (100% minimum convex polygon). 90% cluster core foraging areas are shown for bats with ≥30 radio-tracking fixes for both control (solid grey polygons) and exclusion (hollow black polygons) periods (n = four bats at Bentham, 14 bats at Crakemarsh, seven bats at Shackleford and 15 bats at Studland).
Mentions: Across the five study sites, we recorded over 700 day roost fixes from 114 bats and identified 89 alternative roosts (Table 3). Most were in domestic dwellings, ranging from small bungalows to large manor houses. Roosts in uninhabited buildings, such as garages or sheds, industrial warehouses and trees were used to a lesser extent (Table 4). Roosts were typically within a few hundred metres of foraging areas but up to 5 km from the original colony roost (Fig 1). Of the 89 alternative roosts, we considered that 41 (46%) were suitable alternative colony roosts. Of 114 radio-tagged bats, 110 used one or more alternative roosts during the 4 to 7 day control period. Forty-one bats were not recorded in the original colony roost after being caught there i.e. they roosted exclusively in alternative roosts. We performed emergence counts at 24 alternative roosts during control periods; most (n = 21) contained relatively few bats (mean 7.6 ± 8.6, range 1–33 bats) compared to the original colony roost from which bats were excluded (190.0 ± 65.2, range 150–300 bats). At Bentham, Shackleford and Studland we identified one alternative roost during the control period that contained a large number (>100) of bats, and tagged bats frequently moved between these roosts and the original colony roosts, indicating that at each of these sites the colony was split between two significant roosts prior to exclusion.

Bottom Line: We found no difference in roosting behaviour before and after exclusion.We also found no change in foraging behaviour.Population modelling suggested that any reduction in survival following exclusion could have a negative impact on population growth, whereas a reduction in productivity would have less effect.

View Article: PubMed Central - PubMed

Affiliation: School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom.

ABSTRACT
Conflict can arise when bats roost in human dwellings and householders are affected adversely by their presence. In the United Kingdom, the exclusion of bats from roosts can be licensed under exceptional circumstances to alleviate conflict, but the fate of excluded bats and the impact on their survival and reproduction is not well understood. Using radio-tracking, we investigated the effects of exclusion on the soprano pipistrelle Pipistrellus pygmaeus, a species that commonly roosts in buildings in Europe. Exclusions were performed under licence at five roosts in England in spring, when females were in the early stages of pregnancy. Following exclusion, all bats found alternative roosts and colonies congregated in nearby known roosts that had been used by radio-tagged bats prior to exclusion. We found no difference in roosting behaviour before and after exclusion. Both the frequency of roost switching and the type of roosts used by bats remained unchanged. We also found no change in foraging behaviour. Bats foraged in the same areas, travelled similar distances to reach foraging areas and showed similar patterns of habitat selection before and after exclusion. Population modelling suggested that any reduction in survival following exclusion could have a negative impact on population growth, whereas a reduction in productivity would have less effect. While the number of soprano pipistrelle exclusions currently licensed each year is likely to have little effect on local populations, the cumulative impacts of licensing the destruction of large numbers of roosts may be of concern.

No MeSH data available.