Limits...
Prenatal Exposure to DEHP Affects Spermatogenesis and Sperm DNA Methylation in a Strain-Dependent Manner.

Prados J, Stenz L, Somm E, Stouder C, Dayer A, Paoloni-Giacobino A - PLoS ONE (2015)

Bottom Line: Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents.The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N.In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain.

View Article: PubMed Central - PubMed

Affiliation: Department of Mental Health and Psychiatry, Division of Psychiatric Specialties, University Hospitals of Geneva, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.

ABSTRACT
Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents. Here we investigated the impact of prenatal exposure to DEHP on spermatogenesis and DNA sperm methylation in two distinct, selected, and sequenced mice strains. FVB/N and C57BL/6J mice were orally exposed to 300 mg/kg/day of DEHP from gestation day 9 to 19. Prenatal DEHP exposure significantly decreased spermatogenesis in C57BL/6J (fold-change = 0.6, p-value = 8.7*10-4), but not in FVB/N (fold-change = 1, p-value = 0.9). The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N. At the promoter level, three important subsets of genes were massively affected. Promoters of vomeronasal and olfactory receptors coding genes globally followed the same trend, more pronounced in the C57BL/6J strain, of being hyper-methylated in DEHP related conditions. In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain. We additionally analyze both the presence of functional genetic variations within genes that were associated with the detected DMRs and that could be involved in spermatogenesis, and DMRs related with the DEHP exposure that affected both strains in an opposite manner. The major finding in this study indicates that prenatal exposure to DEHP can decrease spermatogenesis in a strain-dependent manner and affects sperm DNA methylation in promoters of large sets of genes putatively involved in both sperm chemotaxis and post-transcriptional regulatory mechanisms.

No MeSH data available.


Related in: MedlinePlus

Strain-specific DEHP-induced DMRs.The Manhattan plot shows the statistical significance in minus log10 on the y axis, and the location of the probes in the genome with alternate gray and black colors in respect to the chromosomes locations on the x-axis. Horizontal red line correspond to the threshold for statistical significance settled as p = 0.05 corrected with the number of tested probes (yielding p<2.2*10−6). The name of the gene is given and the point appears green in case of genome-wide statistical significance. 5 individuals were tested in the four groups (FVB and C57BL/6J background with both control and DEHP300 treatment).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526524&req=5

pone.0132136.g004: Strain-specific DEHP-induced DMRs.The Manhattan plot shows the statistical significance in minus log10 on the y axis, and the location of the probes in the genome with alternate gray and black colors in respect to the chromosomes locations on the x-axis. Horizontal red line correspond to the threshold for statistical significance settled as p = 0.05 corrected with the number of tested probes (yielding p<2.2*10−6). The name of the gene is given and the point appears green in case of genome-wide statistical significance. 5 individuals were tested in the four groups (FVB and C57BL/6J background with both control and DEHP300 treatment).

Mentions: Strain-specific DEHP-induced DMRs correspond to promoter in which hypo or hyper-methylation in DEHP condition compared to control is observed in one of the two tested strains, whereas opposite or no impact is observed for the same promoter when tested in the other strain. These strain-specific DMRs were analyzed by testing the following formula to be statistically different from zero: Z = (C57BL/6J.controls − C57BL/6J.dehp) − (FVB/N.controls − FVB/N.dehp). Results visualized in a Manhattan plot showed four targets differently affected in term of methylation by DEHP in function of the tested strain and with p-values below the genome wide significance threshold of p < 2*10−6: 1) Tmem125 [log2(FC) in C57BL/6J = 3.8, log2(FC) in FVB/N = 0.2, FDR = 0.0008, p = 3.54*10−8], 2) Piwil2 [log2(FC) in C57BL/6J = -1.3, log2(FC) in FVB/N = 1.5, FDR = 0.0075, p = 6.72*10−7], 3) Fkbp1a [log2(FC) in C57BL/6J = -4.2, log2(FC) in FVB/N = 2.7, FDR = 0.0101, p = 1.35*10−6] and 4) Smim8 [log2(FC) in C57BL/6J = -4.1, log2(FC) in FVB/N = 3.6, FDR = 0.0113, p = 2.00*10−6] (Fig 4). Therefore, Tmem125 promoter was hypo-methylated in DEHP compared with control conditions in C57BL/6J strain, whereas no notable methylation changes could be detected when testing the other FVB/N strain. Piwil2, Fkbp1a and Smim8 promoters were hyper-methylated in DEHP compared with control conditions in C57BL/6J strain, and hypo-methylated in DEHP compared with control conditions in the other tested strain FVB/N. These four targets were indeed DEHP-dependent; they did not differ significantly when compared between strains in controls (S1 Fig).


Prenatal Exposure to DEHP Affects Spermatogenesis and Sperm DNA Methylation in a Strain-Dependent Manner.

Prados J, Stenz L, Somm E, Stouder C, Dayer A, Paoloni-Giacobino A - PLoS ONE (2015)

Strain-specific DEHP-induced DMRs.The Manhattan plot shows the statistical significance in minus log10 on the y axis, and the location of the probes in the genome with alternate gray and black colors in respect to the chromosomes locations on the x-axis. Horizontal red line correspond to the threshold for statistical significance settled as p = 0.05 corrected with the number of tested probes (yielding p<2.2*10−6). The name of the gene is given and the point appears green in case of genome-wide statistical significance. 5 individuals were tested in the four groups (FVB and C57BL/6J background with both control and DEHP300 treatment).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526524&req=5

pone.0132136.g004: Strain-specific DEHP-induced DMRs.The Manhattan plot shows the statistical significance in minus log10 on the y axis, and the location of the probes in the genome with alternate gray and black colors in respect to the chromosomes locations on the x-axis. Horizontal red line correspond to the threshold for statistical significance settled as p = 0.05 corrected with the number of tested probes (yielding p<2.2*10−6). The name of the gene is given and the point appears green in case of genome-wide statistical significance. 5 individuals were tested in the four groups (FVB and C57BL/6J background with both control and DEHP300 treatment).
Mentions: Strain-specific DEHP-induced DMRs correspond to promoter in which hypo or hyper-methylation in DEHP condition compared to control is observed in one of the two tested strains, whereas opposite or no impact is observed for the same promoter when tested in the other strain. These strain-specific DMRs were analyzed by testing the following formula to be statistically different from zero: Z = (C57BL/6J.controls − C57BL/6J.dehp) − (FVB/N.controls − FVB/N.dehp). Results visualized in a Manhattan plot showed four targets differently affected in term of methylation by DEHP in function of the tested strain and with p-values below the genome wide significance threshold of p < 2*10−6: 1) Tmem125 [log2(FC) in C57BL/6J = 3.8, log2(FC) in FVB/N = 0.2, FDR = 0.0008, p = 3.54*10−8], 2) Piwil2 [log2(FC) in C57BL/6J = -1.3, log2(FC) in FVB/N = 1.5, FDR = 0.0075, p = 6.72*10−7], 3) Fkbp1a [log2(FC) in C57BL/6J = -4.2, log2(FC) in FVB/N = 2.7, FDR = 0.0101, p = 1.35*10−6] and 4) Smim8 [log2(FC) in C57BL/6J = -4.1, log2(FC) in FVB/N = 3.6, FDR = 0.0113, p = 2.00*10−6] (Fig 4). Therefore, Tmem125 promoter was hypo-methylated in DEHP compared with control conditions in C57BL/6J strain, whereas no notable methylation changes could be detected when testing the other FVB/N strain. Piwil2, Fkbp1a and Smim8 promoters were hyper-methylated in DEHP compared with control conditions in C57BL/6J strain, and hypo-methylated in DEHP compared with control conditions in the other tested strain FVB/N. These four targets were indeed DEHP-dependent; they did not differ significantly when compared between strains in controls (S1 Fig).

Bottom Line: Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents.The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N.In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain.

View Article: PubMed Central - PubMed

Affiliation: Department of Mental Health and Psychiatry, Division of Psychiatric Specialties, University Hospitals of Geneva, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.

ABSTRACT
Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents. Here we investigated the impact of prenatal exposure to DEHP on spermatogenesis and DNA sperm methylation in two distinct, selected, and sequenced mice strains. FVB/N and C57BL/6J mice were orally exposed to 300 mg/kg/day of DEHP from gestation day 9 to 19. Prenatal DEHP exposure significantly decreased spermatogenesis in C57BL/6J (fold-change = 0.6, p-value = 8.7*10-4), but not in FVB/N (fold-change = 1, p-value = 0.9). The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N. At the promoter level, three important subsets of genes were massively affected. Promoters of vomeronasal and olfactory receptors coding genes globally followed the same trend, more pronounced in the C57BL/6J strain, of being hyper-methylated in DEHP related conditions. In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain. We additionally analyze both the presence of functional genetic variations within genes that were associated with the detected DMRs and that could be involved in spermatogenesis, and DMRs related with the DEHP exposure that affected both strains in an opposite manner. The major finding in this study indicates that prenatal exposure to DEHP can decrease spermatogenesis in a strain-dependent manner and affects sperm DNA methylation in promoters of large sets of genes putatively involved in both sperm chemotaxis and post-transcriptional regulatory mechanisms.

No MeSH data available.


Related in: MedlinePlus