Limits...
miR-126-3p Inhibits Thyroid Cancer Cell Growth and Metastasis, and Is Associated with Aggressive Thyroid Cancer.

Xiong Y, Kotian S, Zeiger MA, Zhang L, Kebebew E - PLoS ONE (2015)

Bottom Line: We found that miR-126-3p expression was significantly lower in larger tumors, in tumor samples with extrathyroidal invasion, and in higher risk group thyroid cancer in 496 papillary thyroid cancer samples from The Cancer Genome Atlas study cohort.In an independent sample set, lower miR-126-3p expression was observed in follicular thyroid cancers (which have capsular and angioinvasion) as compared to follicular adenomas.Of these 14 genes, SLC7A5 and ADAM9 were confirmed to be inhibited by miR-126-3p overexpression and to be direct targets of miR-136-3p.

View Article: PubMed Central - PubMed

Affiliation: Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.

ABSTRACT

Background: Previous studies have shown that microRNAs are dysregulated in thyroid cancer and play important roles in the post-transcriptional regulation of target oncogenes and/or tumor suppressor genes.

Methodology/principal findings: We studied the function of miR-126-3p in thyroid cancer cells, and as a marker of disease aggressiveness. We found that miR-126-3p expression was significantly lower in larger tumors, in tumor samples with extrathyroidal invasion, and in higher risk group thyroid cancer in 496 papillary thyroid cancer samples from The Cancer Genome Atlas study cohort. In an independent sample set, lower miR-126-3p expression was observed in follicular thyroid cancers (which have capsular and angioinvasion) as compared to follicular adenomas. Mechanistically, ectopic overexpression of miR-126-3p significantly inhibited thyroid cancer cell proliferation, in vitro (p<0.01) and in vivo (p<0.01), colony formation (p<0.01), tumor spheroid formation (p<0.05), cellular migration (p<0.05), VEGF secretion and endothelial tube formation, and lung metastasis in vivo. We found 14 predicted target genes, which were significantly altered upon miR-126-3p transfection in thyroid cancer cells, and which are involved in cancer biology. Of these 14 genes, SLC7A5 and ADAM9 were confirmed to be inhibited by miR-126-3p overexpression and to be direct targets of miR-136-3p.

Conclusions/significance: To our knowledge, this is the first study to demonstrate that miR-126-3p has a tumor-suppressive function in thyroid cancer cells, and is associated with aggressive disease phenotype.

No MeSH data available.


Related in: MedlinePlus

MiR-126-3p overexpression inhibits tumor growth and tumor metastasis in vivo.(A) Growth of tumor xenografts in nude mice. Left panel: representative images of mice xenograft size at autopsy. Middle and right panel: tumor luciferase activity and tumor volume measurement, and weight. FTC-133-Luc2 cells transfected with miR-126-3p and miR-NC were inoculated subcutaneously in the flanks of athymic nude mice. (B) Tumor metastasis. Left panel: Representative images of mice with metastases showing luminescence signal. Middle panel: Quantification of luminescence signal intensity differences between miR-126-3p and miR-NC. FTC-133-Luc2 cells transfected with miR-126-3p and miR-NC were injected into athymic nude mice via the tail vein, and the mice were imaged with a Xenogen IVIS 100 system. The relative luminescence signal of each mouse is calculated as the ratio of original signal to the signal taken 14 days post-injection. The images shown here were taken 7 weeks after vein injection of tumor cells. Error bars represent SEM (* indicates p<0.05; ** indicates p<0.01; *** indicates p<0.001). All animal experiments were repeated twice. Right panel: A representative microscopic image (hematoxylin and eosin [H&E] staining) of metastatic lung tumor induced by FTC-133-Luc2 cells transfected with miR-NC and an H&E-stained section of metastatic lung tumor induced by FTC-133-Luc2 cells transfected with miR-126-3p.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526518&req=5

pone.0130496.g004: MiR-126-3p overexpression inhibits tumor growth and tumor metastasis in vivo.(A) Growth of tumor xenografts in nude mice. Left panel: representative images of mice xenograft size at autopsy. Middle and right panel: tumor luciferase activity and tumor volume measurement, and weight. FTC-133-Luc2 cells transfected with miR-126-3p and miR-NC were inoculated subcutaneously in the flanks of athymic nude mice. (B) Tumor metastasis. Left panel: Representative images of mice with metastases showing luminescence signal. Middle panel: Quantification of luminescence signal intensity differences between miR-126-3p and miR-NC. FTC-133-Luc2 cells transfected with miR-126-3p and miR-NC were injected into athymic nude mice via the tail vein, and the mice were imaged with a Xenogen IVIS 100 system. The relative luminescence signal of each mouse is calculated as the ratio of original signal to the signal taken 14 days post-injection. The images shown here were taken 7 weeks after vein injection of tumor cells. Error bars represent SEM (* indicates p<0.05; ** indicates p<0.01; *** indicates p<0.001). All animal experiments were repeated twice. Right panel: A representative microscopic image (hematoxylin and eosin [H&E] staining) of metastatic lung tumor induced by FTC-133-Luc2 cells transfected with miR-NC and an H&E-stained section of metastatic lung tumor induced by FTC-133-Luc2 cells transfected with miR-126-3p.

Mentions: Given our in vitro data, we wanted to evaluate the effect of miR-126-3p on tumor growth in vivo and determine whether transiently elevated levels of miR-126-3p could have a sustained, long-term phenotypic effect. We found that tumor xenografts derived from FTC-133-luc2 cells transfected with miR-126-3p were significantly smaller and weighed less than tumor xenografts from the miR-NC group (p<0.01) (Fig 4A). Because one of the most dramatic effects of miR-126-3p overexpression in vitro was on cellular migration, we next determined if miR-126-3p regulated metastasis in vivo. To determine whether overexpression of miR-126-3p could inhibit tumor metastasis in vivo, FTC-133-luc2 cells transfected with miR-126-3p and miR-NC were injected into athymic nude mice via the tail vein, and the mice were imaged every week. We found that overexpression of miR-126-3p dramatically suppressed lung metastasis in this model (Fig 4B).


miR-126-3p Inhibits Thyroid Cancer Cell Growth and Metastasis, and Is Associated with Aggressive Thyroid Cancer.

Xiong Y, Kotian S, Zeiger MA, Zhang L, Kebebew E - PLoS ONE (2015)

MiR-126-3p overexpression inhibits tumor growth and tumor metastasis in vivo.(A) Growth of tumor xenografts in nude mice. Left panel: representative images of mice xenograft size at autopsy. Middle and right panel: tumor luciferase activity and tumor volume measurement, and weight. FTC-133-Luc2 cells transfected with miR-126-3p and miR-NC were inoculated subcutaneously in the flanks of athymic nude mice. (B) Tumor metastasis. Left panel: Representative images of mice with metastases showing luminescence signal. Middle panel: Quantification of luminescence signal intensity differences between miR-126-3p and miR-NC. FTC-133-Luc2 cells transfected with miR-126-3p and miR-NC were injected into athymic nude mice via the tail vein, and the mice were imaged with a Xenogen IVIS 100 system. The relative luminescence signal of each mouse is calculated as the ratio of original signal to the signal taken 14 days post-injection. The images shown here were taken 7 weeks after vein injection of tumor cells. Error bars represent SEM (* indicates p<0.05; ** indicates p<0.01; *** indicates p<0.001). All animal experiments were repeated twice. Right panel: A representative microscopic image (hematoxylin and eosin [H&E] staining) of metastatic lung tumor induced by FTC-133-Luc2 cells transfected with miR-NC and an H&E-stained section of metastatic lung tumor induced by FTC-133-Luc2 cells transfected with miR-126-3p.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526518&req=5

pone.0130496.g004: MiR-126-3p overexpression inhibits tumor growth and tumor metastasis in vivo.(A) Growth of tumor xenografts in nude mice. Left panel: representative images of mice xenograft size at autopsy. Middle and right panel: tumor luciferase activity and tumor volume measurement, and weight. FTC-133-Luc2 cells transfected with miR-126-3p and miR-NC were inoculated subcutaneously in the flanks of athymic nude mice. (B) Tumor metastasis. Left panel: Representative images of mice with metastases showing luminescence signal. Middle panel: Quantification of luminescence signal intensity differences between miR-126-3p and miR-NC. FTC-133-Luc2 cells transfected with miR-126-3p and miR-NC were injected into athymic nude mice via the tail vein, and the mice were imaged with a Xenogen IVIS 100 system. The relative luminescence signal of each mouse is calculated as the ratio of original signal to the signal taken 14 days post-injection. The images shown here were taken 7 weeks after vein injection of tumor cells. Error bars represent SEM (* indicates p<0.05; ** indicates p<0.01; *** indicates p<0.001). All animal experiments were repeated twice. Right panel: A representative microscopic image (hematoxylin and eosin [H&E] staining) of metastatic lung tumor induced by FTC-133-Luc2 cells transfected with miR-NC and an H&E-stained section of metastatic lung tumor induced by FTC-133-Luc2 cells transfected with miR-126-3p.
Mentions: Given our in vitro data, we wanted to evaluate the effect of miR-126-3p on tumor growth in vivo and determine whether transiently elevated levels of miR-126-3p could have a sustained, long-term phenotypic effect. We found that tumor xenografts derived from FTC-133-luc2 cells transfected with miR-126-3p were significantly smaller and weighed less than tumor xenografts from the miR-NC group (p<0.01) (Fig 4A). Because one of the most dramatic effects of miR-126-3p overexpression in vitro was on cellular migration, we next determined if miR-126-3p regulated metastasis in vivo. To determine whether overexpression of miR-126-3p could inhibit tumor metastasis in vivo, FTC-133-luc2 cells transfected with miR-126-3p and miR-NC were injected into athymic nude mice via the tail vein, and the mice were imaged every week. We found that overexpression of miR-126-3p dramatically suppressed lung metastasis in this model (Fig 4B).

Bottom Line: We found that miR-126-3p expression was significantly lower in larger tumors, in tumor samples with extrathyroidal invasion, and in higher risk group thyroid cancer in 496 papillary thyroid cancer samples from The Cancer Genome Atlas study cohort.In an independent sample set, lower miR-126-3p expression was observed in follicular thyroid cancers (which have capsular and angioinvasion) as compared to follicular adenomas.Of these 14 genes, SLC7A5 and ADAM9 were confirmed to be inhibited by miR-126-3p overexpression and to be direct targets of miR-136-3p.

View Article: PubMed Central - PubMed

Affiliation: Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.

ABSTRACT

Background: Previous studies have shown that microRNAs are dysregulated in thyroid cancer and play important roles in the post-transcriptional regulation of target oncogenes and/or tumor suppressor genes.

Methodology/principal findings: We studied the function of miR-126-3p in thyroid cancer cells, and as a marker of disease aggressiveness. We found that miR-126-3p expression was significantly lower in larger tumors, in tumor samples with extrathyroidal invasion, and in higher risk group thyroid cancer in 496 papillary thyroid cancer samples from The Cancer Genome Atlas study cohort. In an independent sample set, lower miR-126-3p expression was observed in follicular thyroid cancers (which have capsular and angioinvasion) as compared to follicular adenomas. Mechanistically, ectopic overexpression of miR-126-3p significantly inhibited thyroid cancer cell proliferation, in vitro (p<0.01) and in vivo (p<0.01), colony formation (p<0.01), tumor spheroid formation (p<0.05), cellular migration (p<0.05), VEGF secretion and endothelial tube formation, and lung metastasis in vivo. We found 14 predicted target genes, which were significantly altered upon miR-126-3p transfection in thyroid cancer cells, and which are involved in cancer biology. Of these 14 genes, SLC7A5 and ADAM9 were confirmed to be inhibited by miR-126-3p overexpression and to be direct targets of miR-136-3p.

Conclusions/significance: To our knowledge, this is the first study to demonstrate that miR-126-3p has a tumor-suppressive function in thyroid cancer cells, and is associated with aggressive disease phenotype.

No MeSH data available.


Related in: MedlinePlus