Limits...
Structural and Photoconductivity Properties of Tellurium/PMMA Films.

Carotenuto G, Palomba M, De Nicola S, Ambrosone G, Coscia U - Nanoscale Res Lett (2015)

Bottom Line: A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer.The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide.Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

View Article: PubMed Central - PubMed

Affiliation: Institute for Polymers, Composites and Biomaterials, National Research Council, Piazzale E. Fermi 1, 80055, Portici, Naples, Italy.

ABSTRACT
Owing to the very brittle nature of tellurium powder, nanoscopic grains with an average size of 4.8 ± 0.8 nm were produced by dry vibration milling technique using a mixer/mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer. The morphology, elemental composition, and structural and optical properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied, for different electrode contact configurations, in dark condition and under white light illumination varying the optical power density from 2 to 170 mW/cm(2) and turning the light on and off cyclically. Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

No MeSH data available.


I–V characteristics of the Te/PMMA films in coplanar configuration (a) and sandwich configuration (b). In the inset, the absolute value of Idark, abs (I), as a function of the applied voltage V is plotted in semi-log scale
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526513&req=5

Fig7: I–V characteristics of the Te/PMMA films in coplanar configuration (a) and sandwich configuration (b). In the inset, the absolute value of Idark, abs (I), as a function of the applied voltage V is plotted in semi-log scale

Mentions: The electrical characterization of the Te/PMMA samples was performed both in coplanar and sandwich configurations. In the dark condition, the I–V characteristic in the coplanar configuration is nonlinear (see Fig. 7a) and the behavior of the absolute value of the current as a function of the applied voltage V is exponential as shown in the semilogarithmic plot of the inset in Fig. 7a. In the sandwich configuration, the I–V characteristic, displayed in Fig. 7b, is quite linear indicating that the contacts are ohmic.Fig. 7


Structural and Photoconductivity Properties of Tellurium/PMMA Films.

Carotenuto G, Palomba M, De Nicola S, Ambrosone G, Coscia U - Nanoscale Res Lett (2015)

I–V characteristics of the Te/PMMA films in coplanar configuration (a) and sandwich configuration (b). In the inset, the absolute value of Idark, abs (I), as a function of the applied voltage V is plotted in semi-log scale
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526513&req=5

Fig7: I–V characteristics of the Te/PMMA films in coplanar configuration (a) and sandwich configuration (b). In the inset, the absolute value of Idark, abs (I), as a function of the applied voltage V is plotted in semi-log scale
Mentions: The electrical characterization of the Te/PMMA samples was performed both in coplanar and sandwich configurations. In the dark condition, the I–V characteristic in the coplanar configuration is nonlinear (see Fig. 7a) and the behavior of the absolute value of the current as a function of the applied voltage V is exponential as shown in the semilogarithmic plot of the inset in Fig. 7a. In the sandwich configuration, the I–V characteristic, displayed in Fig. 7b, is quite linear indicating that the contacts are ohmic.Fig. 7

Bottom Line: A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer.The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide.Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

View Article: PubMed Central - PubMed

Affiliation: Institute for Polymers, Composites and Biomaterials, National Research Council, Piazzale E. Fermi 1, 80055, Portici, Naples, Italy.

ABSTRACT
Owing to the very brittle nature of tellurium powder, nanoscopic grains with an average size of 4.8 ± 0.8 nm were produced by dry vibration milling technique using a mixer/mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer. The morphology, elemental composition, and structural and optical properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied, for different electrode contact configurations, in dark condition and under white light illumination varying the optical power density from 2 to 170 mW/cm(2) and turning the light on and off cyclically. Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

No MeSH data available.