Limits...
Structural and Photoconductivity Properties of Tellurium/PMMA Films.

Carotenuto G, Palomba M, De Nicola S, Ambrosone G, Coscia U - Nanoscale Res Lett (2015)

Bottom Line: A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer.The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide.Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

View Article: PubMed Central - PubMed

Affiliation: Institute for Polymers, Composites and Biomaterials, National Research Council, Piazzale E. Fermi 1, 80055, Portici, Naples, Italy.

ABSTRACT
Owing to the very brittle nature of tellurium powder, nanoscopic grains with an average size of 4.8 ± 0.8 nm were produced by dry vibration milling technique using a mixer/mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer. The morphology, elemental composition, and structural and optical properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied, for different electrode contact configurations, in dark condition and under white light illumination varying the optical power density from 2 to 170 mW/cm(2) and turning the light on and off cyclically. Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

No MeSH data available.


Transmittance, T, and reflectance, R, spectra of the Te/PMMA film in the UV-vis-NIR region
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526513&req=5

Fig6: Transmittance, T, and reflectance, R, spectra of the Te/PMMA film in the UV-vis-NIR region

Mentions: The optical properties of the Te/PMMA film were investigated by means of transmittance (T) and reflectance (R) spectroscopy in the UV-vis-NIR range. The R/T spectra of the film are shown in Fig. 6. The transmittance increases in the 200–350 nm range, and it is quite constant in the Vis and NIR ranges. The reflectance rapidly decreases in the UV region, slightly decreases in the Vis region, and is quite constant in the NIR region. Thus, from quantitative analysis, the sample absorptance varies in the 0.8–0.9 range in all the UV-vis-NIR regions.Fig. 6


Structural and Photoconductivity Properties of Tellurium/PMMA Films.

Carotenuto G, Palomba M, De Nicola S, Ambrosone G, Coscia U - Nanoscale Res Lett (2015)

Transmittance, T, and reflectance, R, spectra of the Te/PMMA film in the UV-vis-NIR region
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526513&req=5

Fig6: Transmittance, T, and reflectance, R, spectra of the Te/PMMA film in the UV-vis-NIR region
Mentions: The optical properties of the Te/PMMA film were investigated by means of transmittance (T) and reflectance (R) spectroscopy in the UV-vis-NIR range. The R/T spectra of the film are shown in Fig. 6. The transmittance increases in the 200–350 nm range, and it is quite constant in the Vis and NIR ranges. The reflectance rapidly decreases in the UV region, slightly decreases in the Vis region, and is quite constant in the NIR region. Thus, from quantitative analysis, the sample absorptance varies in the 0.8–0.9 range in all the UV-vis-NIR regions.Fig. 6

Bottom Line: A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer.The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide.Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

View Article: PubMed Central - PubMed

Affiliation: Institute for Polymers, Composites and Biomaterials, National Research Council, Piazzale E. Fermi 1, 80055, Portici, Naples, Italy.

ABSTRACT
Owing to the very brittle nature of tellurium powder, nanoscopic grains with an average size of 4.8 ± 0.8 nm were produced by dry vibration milling technique using a mixer/mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer. The morphology, elemental composition, and structural and optical properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied, for different electrode contact configurations, in dark condition and under white light illumination varying the optical power density from 2 to 170 mW/cm(2) and turning the light on and off cyclically. Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

No MeSH data available.