Limits...
Structural and Photoconductivity Properties of Tellurium/PMMA Films.

Carotenuto G, Palomba M, De Nicola S, Ambrosone G, Coscia U - Nanoscale Res Lett (2015)

Bottom Line: A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer.The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide.Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

View Article: PubMed Central - PubMed

Affiliation: Institute for Polymers, Composites and Biomaterials, National Research Council, Piazzale E. Fermi 1, 80055, Portici, Naples, Italy.

ABSTRACT
Owing to the very brittle nature of tellurium powder, nanoscopic grains with an average size of 4.8 ± 0.8 nm were produced by dry vibration milling technique using a mixer/mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer. The morphology, elemental composition, and structural and optical properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied, for different electrode contact configurations, in dark condition and under white light illumination varying the optical power density from 2 to 170 mW/cm(2) and turning the light on and off cyclically. Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

No MeSH data available.


The maximum photocurrent obtained for each light-dark cycle, Iphmax, versus light power density, F, for sandwich and coplanar configurations
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4526513&req=5

Fig11: The maximum photocurrent obtained for each light-dark cycle, Iphmax, versus light power density, F, for sandwich and coplanar configurations

Mentions: In order to compare the photoresponse of the samples for the two contact configurations, the photocurrent Iphmax is plotted as a function of F in Fig. 11 in bi-logarithmic scale. Clearly, in the case of the sandwich configuration, the photocurrent obtained applying only tens of microvolts of bias voltage is more than 2 orders of magnitude greater than the one measured in the coplanar configuration by applying 200 V.Fig. 11


Structural and Photoconductivity Properties of Tellurium/PMMA Films.

Carotenuto G, Palomba M, De Nicola S, Ambrosone G, Coscia U - Nanoscale Res Lett (2015)

The maximum photocurrent obtained for each light-dark cycle, Iphmax, versus light power density, F, for sandwich and coplanar configurations
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4526513&req=5

Fig11: The maximum photocurrent obtained for each light-dark cycle, Iphmax, versus light power density, F, for sandwich and coplanar configurations
Mentions: In order to compare the photoresponse of the samples for the two contact configurations, the photocurrent Iphmax is plotted as a function of F in Fig. 11 in bi-logarithmic scale. Clearly, in the case of the sandwich configuration, the photocurrent obtained applying only tens of microvolts of bias voltage is more than 2 orders of magnitude greater than the one measured in the coplanar configuration by applying 200 V.Fig. 11

Bottom Line: A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer.The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide.Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

View Article: PubMed Central - PubMed

Affiliation: Institute for Polymers, Composites and Biomaterials, National Research Council, Piazzale E. Fermi 1, 80055, Portici, Naples, Italy.

ABSTRACT
Owing to the very brittle nature of tellurium powder, nanoscopic grains with an average size of 4.8 ± 0.8 nm were produced by dry vibration milling technique using a mixer/mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer. The morphology, elemental composition, and structural and optical properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied, for different electrode contact configurations, in dark condition and under white light illumination varying the optical power density from 2 to 170 mW/cm(2) and turning the light on and off cyclically. Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

No MeSH data available.