Limits...
Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process.

Chen CY, Jing MX, Pi ZC, Zhu SW, Shen XQ - Nanoscale Res Lett (2015)

Bottom Line: The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment.The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds.At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8.

View Article: PubMed Central - PubMed

Affiliation: Institute for Advanced Materials, Jiangsu University, Jiangsu, 212013, China.

ABSTRACT
The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends.

No MeSH data available.


Related in: MedlinePlus

Change of sheet resistance of the films before/after adhesion test with 3 M adhesive tape
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4526509&req=5

Fig6: Change of sheet resistance of the films before/after adhesion test with 3 M adhesive tape

Mentions: Adhesion property between conductive film with substrate is a precondition for a film’s mechanical stability. From Fig. 6, it was clearly shown that the sheet resistance for the films with mechanical press at 3 MPa and 10 MPa changes from 73.2 Ω/sq to 945.7 Ω/sq and 71.4 Ω/sq to 152.3 Ω/sq, respectively, after tape testing. While the sheet resistance for the film without press increases from 91.5 Ω/sq to 2140.2 Ω/sq. In one respect, this result indicates that the adhesion between the substrate and the AgNWs film was significantly enhanced by mechanical press. On the other hand, the result also states that 3 MPa pressure for prepressing is just able to increase the conductivity of AgNWs film (Rs from 91.5 Ω/sq to 73.2 Ω/sq) by increasing the conjunctions between AgNWs but not enough to improve the adhesion between AgNWs and substrate. Therefore, 10 MPa pressure for second pressing is essential. This phenomenon is wholly consistent with our previous work [30]. The strong and stable adhesion might come from the film uniformity and tight junction between nanowires network and with substrate after second press treatment as shown in Fig. 7. From the AFM images of the films treated with 0, 3, and 10 MPa in Fig. 7, it can be clearly seen that the pressed film becomes smoother with the increase of pressure, the surface roughness of the films after press treatment of 0, 3, and 10 MPa is 42.5, 29.3, and 17.8 nm, respectively, and the AgNWs have been compacted tightly between each other and almost embedded into the substrate when pressed at 10 MPa.Fig. 6


Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process.

Chen CY, Jing MX, Pi ZC, Zhu SW, Shen XQ - Nanoscale Res Lett (2015)

Change of sheet resistance of the films before/after adhesion test with 3 M adhesive tape
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4526509&req=5

Fig6: Change of sheet resistance of the films before/after adhesion test with 3 M adhesive tape
Mentions: Adhesion property between conductive film with substrate is a precondition for a film’s mechanical stability. From Fig. 6, it was clearly shown that the sheet resistance for the films with mechanical press at 3 MPa and 10 MPa changes from 73.2 Ω/sq to 945.7 Ω/sq and 71.4 Ω/sq to 152.3 Ω/sq, respectively, after tape testing. While the sheet resistance for the film without press increases from 91.5 Ω/sq to 2140.2 Ω/sq. In one respect, this result indicates that the adhesion between the substrate and the AgNWs film was significantly enhanced by mechanical press. On the other hand, the result also states that 3 MPa pressure for prepressing is just able to increase the conductivity of AgNWs film (Rs from 91.5 Ω/sq to 73.2 Ω/sq) by increasing the conjunctions between AgNWs but not enough to improve the adhesion between AgNWs and substrate. Therefore, 10 MPa pressure for second pressing is essential. This phenomenon is wholly consistent with our previous work [30]. The strong and stable adhesion might come from the film uniformity and tight junction between nanowires network and with substrate after second press treatment as shown in Fig. 7. From the AFM images of the films treated with 0, 3, and 10 MPa in Fig. 7, it can be clearly seen that the pressed film becomes smoother with the increase of pressure, the surface roughness of the films after press treatment of 0, 3, and 10 MPa is 42.5, 29.3, and 17.8 nm, respectively, and the AgNWs have been compacted tightly between each other and almost embedded into the substrate when pressed at 10 MPa.Fig. 6

Bottom Line: The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment.The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds.At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8.

View Article: PubMed Central - PubMed

Affiliation: Institute for Advanced Materials, Jiangsu University, Jiangsu, 212013, China.

ABSTRACT
The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends.

No MeSH data available.


Related in: MedlinePlus