Limits...
Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process.

Chen CY, Jing MX, Pi ZC, Zhu SW, Shen XQ - Nanoscale Res Lett (2015)

Bottom Line: The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment.The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds.At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8.

View Article: PubMed Central - PubMed

Affiliation: Institute for Advanced Materials, Jiangsu University, Jiangsu, 212013, China.

ABSTRACT
The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends.

No MeSH data available.


Related in: MedlinePlus

FOM value of a different lifting speed when the dipping speed is 50 mm/min and b different dipping speed when the lifting speed is 100 mm/min
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4526509&req=5

Fig5: FOM value of a different lifting speed when the dipping speed is 50 mm/min and b different dipping speed when the lifting speed is 100 mm/min

Mentions: In this equation, Zo is the impedance of the free space and has the value of 377 Ω, T is the transmittance and Rs is the sheet resistance. From Eq. (1), we can notice that the FOM value will be high when the film with low sheet resistance and high transmittance. The transmittance and sheet resistance have illustrated that the dipping speed of 50 mm/min and the lifting speed of 100 mm/min is the best condition to form a uniform, high performance TCF. Figure 5 shows the FOM values of TCFs which prepared at different dipping speed or lifting speed. From Fig. 5a, b, when the dipping speed is 50 mm/min and lifting speed is 100 mm/min, the AgNWs film shows a high FOM value of 35.8. Some studies [7, 33] had pointed out that the minimum industry standard of FOM for replacing ITO material is 35. So the AgNW/PVC/AgNW film fabricated by the dip-coating method can meet the requirement of the minimum industry standard of FOM.Fig. 5


Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process.

Chen CY, Jing MX, Pi ZC, Zhu SW, Shen XQ - Nanoscale Res Lett (2015)

FOM value of a different lifting speed when the dipping speed is 50 mm/min and b different dipping speed when the lifting speed is 100 mm/min
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4526509&req=5

Fig5: FOM value of a different lifting speed when the dipping speed is 50 mm/min and b different dipping speed when the lifting speed is 100 mm/min
Mentions: In this equation, Zo is the impedance of the free space and has the value of 377 Ω, T is the transmittance and Rs is the sheet resistance. From Eq. (1), we can notice that the FOM value will be high when the film with low sheet resistance and high transmittance. The transmittance and sheet resistance have illustrated that the dipping speed of 50 mm/min and the lifting speed of 100 mm/min is the best condition to form a uniform, high performance TCF. Figure 5 shows the FOM values of TCFs which prepared at different dipping speed or lifting speed. From Fig. 5a, b, when the dipping speed is 50 mm/min and lifting speed is 100 mm/min, the AgNWs film shows a high FOM value of 35.8. Some studies [7, 33] had pointed out that the minimum industry standard of FOM for replacing ITO material is 35. So the AgNW/PVC/AgNW film fabricated by the dip-coating method can meet the requirement of the minimum industry standard of FOM.Fig. 5

Bottom Line: The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment.The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds.At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8.

View Article: PubMed Central - PubMed

Affiliation: Institute for Advanced Materials, Jiangsu University, Jiangsu, 212013, China.

ABSTRACT
The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends.

No MeSH data available.


Related in: MedlinePlus