Limits...
Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process.

Chen CY, Jing MX, Pi ZC, Zhu SW, Shen XQ - Nanoscale Res Lett (2015)

Bottom Line: The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment.The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds.At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8.

View Article: PubMed Central - PubMed

Affiliation: Institute for Advanced Materials, Jiangsu University, Jiangsu, 212013, China.

ABSTRACT
The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends.

No MeSH data available.


Related in: MedlinePlus

SEM morphologies of the AgNWs/PVC/AgNWs films prepared at the condition of dipping speed = 50 mm/min, lifting speed = 100 mm/min, a side 1 and b side 2
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4526509&req=5

Fig4: SEM morphologies of the AgNWs/PVC/AgNWs films prepared at the condition of dipping speed = 50 mm/min, lifting speed = 100 mm/min, a side 1 and b side 2

Mentions: The SEM images for the AgNWs networks on both sides of the PVC substrate prepared at the dipping speed of 50 mm/min and lifting speed of 100 mm/min are shown in Fig. 4. From the SEM of side 1 and side 2, the AgNWs have formed a similar network and uniform distribution on the surface of PVC substrate. Therefore, using dip-coating process, the double-sided AgNWs/PVC/AgNWs with high transmittance and low resistance can be fabricated via one-pot step instead of pasting two single-sided conductive films on the two sides of the substrate, which greatly simplify the production process, cut down the cost, and increase the yield rate.Fig. 4


Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process.

Chen CY, Jing MX, Pi ZC, Zhu SW, Shen XQ - Nanoscale Res Lett (2015)

SEM morphologies of the AgNWs/PVC/AgNWs films prepared at the condition of dipping speed = 50 mm/min, lifting speed = 100 mm/min, a side 1 and b side 2
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4526509&req=5

Fig4: SEM morphologies of the AgNWs/PVC/AgNWs films prepared at the condition of dipping speed = 50 mm/min, lifting speed = 100 mm/min, a side 1 and b side 2
Mentions: The SEM images for the AgNWs networks on both sides of the PVC substrate prepared at the dipping speed of 50 mm/min and lifting speed of 100 mm/min are shown in Fig. 4. From the SEM of side 1 and side 2, the AgNWs have formed a similar network and uniform distribution on the surface of PVC substrate. Therefore, using dip-coating process, the double-sided AgNWs/PVC/AgNWs with high transmittance and low resistance can be fabricated via one-pot step instead of pasting two single-sided conductive films on the two sides of the substrate, which greatly simplify the production process, cut down the cost, and increase the yield rate.Fig. 4

Bottom Line: The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment.The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds.At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8.

View Article: PubMed Central - PubMed

Affiliation: Institute for Advanced Materials, Jiangsu University, Jiangsu, 212013, China.

ABSTRACT
The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends.

No MeSH data available.


Related in: MedlinePlus