Limits...
Effect of Segment-Body Vibration on Strength Parameters.

Goebel RT, Kleinöder H, Yue Z, Gosh R, Mester J - Sports Med Open (2015)

Bottom Line: At the conclusion of the training, a 2-week detraining was imposed and then the study concluded with posttests and retest.Moreover, the muscle tension at maximum knee angle increased less in VG (approximately 35 %) compared to TG (approximately 46 %).We conclude that segment-body vibrations applied in resistance training can offer an effective tool to increase maximum isometric force, compared to traditional training.

View Article: PubMed Central - PubMed

Affiliation: Sport Science Program, Qatar University, P.O. Box 2713, Doha, Qatar.

ABSTRACT

Background: In this study, we examine the biomechanical advantage of combining localized vibrations to hamstring muscles involved in a traditional resistance training routine.

Methods: Thirty-six male and female participants with at least 2 years of experience in resistance training were recruited from the German Sport University Cologne. The participants were randomized into two training groups: vibration training group (VG) and traditional training group (TTG). Both groups underwent a 4-week training phase, where each participant worked out at 70 % of the individual 1 repeat maximum (RM-maximum load capacity of a muscle for one lift to fatigue) (4 sets with 12 repetitions each). For participants in the VG group, local vibration was additionally applied directly to hamstring muscles during exercise. A 2-week examination phase preceded the pretests. After the pretests, the subjects underwent a prescribed training for 4 weeks. At the conclusion of the training, a 2-week detraining was imposed and then the study concluded with posttests and retest.

Results: The measured parameters were maximum isometric force of the hamstrings and maximum range of motion and muscle tension at maximum knee angle. The study revealed a significant increase in maximum isometric force in both training groups (VG = 21 %, TTG = 14 %). However, VG groups showed an increase in their range of motion by approximately 2 %. Moreover, the muscle tension at maximum knee angle increased less in VG (approximately 35 %) compared to TG (approximately 46 %).

Conclusions: We conclude that segment-body vibrations applied in resistance training can offer an effective tool to increase maximum isometric force, compared to traditional training. The cause for these findings can be attributed to the additional local vibration stimulus.

No MeSH data available.


Related in: MedlinePlus

Measurement station and measurement procedure of muscle tension. A: fixation of the leg to be tested, B: fixation of the counter-lateral leg, C: adjustment pole, D: direction of traction, E: force sensor, target angle α, hip angle β, 90° between lower leg and cable winch
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4526247&req=5

Fig2: Measurement station and measurement procedure of muscle tension. A: fixation of the leg to be tested, B: fixation of the counter-lateral leg, C: adjustment pole, D: direction of traction, E: force sensor, target angle α, hip angle β, 90° between lower leg and cable winch

Mentions: In order to determine the range of motion of the knee joint, the following novel setup has been applied considering the anatomical structures of the knee joint. To the best of our knowledge, no references record this setup. Subjects lay on their backs with the counter-lateral knee protruding over the edge of the bench. This leg was fixed with a belt (see Fig. 2b) to avoid evasive movement of the hip joint. The leg to be studied was brought to maximum flexion in the hip joint (hip angle β; see Fig. 2). The two-joint hamstring muscles (m. semitendinosus, m. semimembranosus, m. biceps femoris (caput longum)) were fixed in their final position at the hip joint (see Fig. 2a). The hip angle β was measured taking the horizontal plane and the distal end of the condylus lateralis as reference points and trochanter major as pivot point. The maximum hip angle β of the pretest is re-established during all following measurements and therefore standardized the measurement. While the hip joint angle is fixed, subjects used a cable winch to bring the leg to be studied into a stretching position. Consequently, the hamstring muscles experience an extension. The distal end of the condylus lateralis, the trochanter major of the hip joint, and the malleolus lateralis of the ankle form the reference points for the knee angle α (see Fig. 2). The measurement accuracy of the goniometer was 1°. Angles were recorded after 3 s in the maximum joint angle. The maximum knee angle was self-determined by the subjects and defined as a position which the volunteer felt discomfort, but no pain. The knee angle α of the pretest served as reference value for the muscle tension and therefore was established in all following measurements. After this standard value was achieved, subjects are asked to reach their maximum possible knee angle. This novel setup to measure the ROM of the knee joint to determine the extensibility of the hamstring muscles was applied to eliminate the pain that occurs while stretching the hamstring muscles with full knee extension [33–36].Fig. 2


Effect of Segment-Body Vibration on Strength Parameters.

Goebel RT, Kleinöder H, Yue Z, Gosh R, Mester J - Sports Med Open (2015)

Measurement station and measurement procedure of muscle tension. A: fixation of the leg to be tested, B: fixation of the counter-lateral leg, C: adjustment pole, D: direction of traction, E: force sensor, target angle α, hip angle β, 90° between lower leg and cable winch
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4526247&req=5

Fig2: Measurement station and measurement procedure of muscle tension. A: fixation of the leg to be tested, B: fixation of the counter-lateral leg, C: adjustment pole, D: direction of traction, E: force sensor, target angle α, hip angle β, 90° between lower leg and cable winch
Mentions: In order to determine the range of motion of the knee joint, the following novel setup has been applied considering the anatomical structures of the knee joint. To the best of our knowledge, no references record this setup. Subjects lay on their backs with the counter-lateral knee protruding over the edge of the bench. This leg was fixed with a belt (see Fig. 2b) to avoid evasive movement of the hip joint. The leg to be studied was brought to maximum flexion in the hip joint (hip angle β; see Fig. 2). The two-joint hamstring muscles (m. semitendinosus, m. semimembranosus, m. biceps femoris (caput longum)) were fixed in their final position at the hip joint (see Fig. 2a). The hip angle β was measured taking the horizontal plane and the distal end of the condylus lateralis as reference points and trochanter major as pivot point. The maximum hip angle β of the pretest is re-established during all following measurements and therefore standardized the measurement. While the hip joint angle is fixed, subjects used a cable winch to bring the leg to be studied into a stretching position. Consequently, the hamstring muscles experience an extension. The distal end of the condylus lateralis, the trochanter major of the hip joint, and the malleolus lateralis of the ankle form the reference points for the knee angle α (see Fig. 2). The measurement accuracy of the goniometer was 1°. Angles were recorded after 3 s in the maximum joint angle. The maximum knee angle was self-determined by the subjects and defined as a position which the volunteer felt discomfort, but no pain. The knee angle α of the pretest served as reference value for the muscle tension and therefore was established in all following measurements. After this standard value was achieved, subjects are asked to reach their maximum possible knee angle. This novel setup to measure the ROM of the knee joint to determine the extensibility of the hamstring muscles was applied to eliminate the pain that occurs while stretching the hamstring muscles with full knee extension [33–36].Fig. 2

Bottom Line: At the conclusion of the training, a 2-week detraining was imposed and then the study concluded with posttests and retest.Moreover, the muscle tension at maximum knee angle increased less in VG (approximately 35 %) compared to TG (approximately 46 %).We conclude that segment-body vibrations applied in resistance training can offer an effective tool to increase maximum isometric force, compared to traditional training.

View Article: PubMed Central - PubMed

Affiliation: Sport Science Program, Qatar University, P.O. Box 2713, Doha, Qatar.

ABSTRACT

Background: In this study, we examine the biomechanical advantage of combining localized vibrations to hamstring muscles involved in a traditional resistance training routine.

Methods: Thirty-six male and female participants with at least 2 years of experience in resistance training were recruited from the German Sport University Cologne. The participants were randomized into two training groups: vibration training group (VG) and traditional training group (TTG). Both groups underwent a 4-week training phase, where each participant worked out at 70 % of the individual 1 repeat maximum (RM-maximum load capacity of a muscle for one lift to fatigue) (4 sets with 12 repetitions each). For participants in the VG group, local vibration was additionally applied directly to hamstring muscles during exercise. A 2-week examination phase preceded the pretests. After the pretests, the subjects underwent a prescribed training for 4 weeks. At the conclusion of the training, a 2-week detraining was imposed and then the study concluded with posttests and retest.

Results: The measured parameters were maximum isometric force of the hamstrings and maximum range of motion and muscle tension at maximum knee angle. The study revealed a significant increase in maximum isometric force in both training groups (VG = 21 %, TTG = 14 %). However, VG groups showed an increase in their range of motion by approximately 2 %. Moreover, the muscle tension at maximum knee angle increased less in VG (approximately 35 %) compared to TG (approximately 46 %).

Conclusions: We conclude that segment-body vibrations applied in resistance training can offer an effective tool to increase maximum isometric force, compared to traditional training. The cause for these findings can be attributed to the additional local vibration stimulus.

No MeSH data available.


Related in: MedlinePlus